
	 	
	
	 	 CoCoMaps	Project		|		CMLabs		|		IIIM	
	

1	 	 CCM	Architecture	Draft	Implementation		

	
	
	
	
	
	
	

Draft	Implementation	of	the		

Collaborative	Cognitive	Map	
Architecture	

	
	

CoCoMaps	Deliverable	T8.D1	
	
	
	
	
Author:	 	 	 Thor	List,	CMLabs	
Created:	 	 	 November	2017	
Last	modified:	 	 December	2017	
	
References:		 	 State-of-the-art	implementation	of	the	CM	Architecture	
	 	 	 	 Draft	implementation	of	the	new	CCM	Architecture	

	
	
	
	
	
	
	
	

	

	

	 	
	
	 	 CoCoMaps	Project		|		CMLabs		|		IIIM	
	

2	 	 CCM	Architecture	Draft	Implementation		

	
	

Contents	

	 	
Introduction	..	3	

Making	the	Cognitive	Map	Architecture	Collaborative	...	3	

CCMCatalog	–	Overview	...	4	

CCMCatalog	Implementation	..	5	

Maps	..	5	

Objects	and	Identities	..	6	

Storing	Observations	...	6	

Retrieving	Observations	..	6	

Negotiation	..	6	

Operator	Views	..	7	

Operator	Interaction	...	7	

	
APPENDIX	1:	Details	of	Current	State	of	Implementation	..	8	

	
	 	
	 	

	 	
	
	 	 CoCoMaps	Project		|		CMLabs		|		IIIM	
	

3	 	 CCM	Architecture	Draft	Implementation		

	

Introduction	

The	Collaborative	Cognitive	Map	(CCM)	architecture	is	a	new	AI	agent	/	robot	middleware	
built	to	enable	coherent	integration	of	time-based	control	systems	for	robots	and	other	
sensor-actuator	systems	such	as	embedded	systems	and	distributed	systems,	with	specific	
focus	on	multimodal	multi-party	dialog	and	task	execution.	
	
The	original	Cognitive	Map	Architecture	was	created	in	collaboration	with	Honda	Research	
Institute	in	California	for	the	purpose	of	adding	learning	and	human	interaction	to	their	
ASIMO	robot.	It	was	implemented	in	Psyclone	version	1	and	ran	a	combination	of	C++,	Java	
and	LUA	code.	
	
An	earlier	report	(State-of-the-art	implementation	of	the	CM	Architecture)	from	the	
CoCoMaps	project	detailed	the	upgrade	of	this	earlier	work	to	produce	a	current	and	viable	
implementation,	in	preparation	for	moving	this	into	the	realm	of	collaborative	robotics.	

This report details the first draft release of the Collaborative Cognitive Map
architecture. It allows two or more robots to share information in real-time and to
negotiate about the validity of observations when the data does not quite agree.

CoCoMaps is funded by the ECHORD++ project through the European Union’s 7th
Framework Programme for Research, Technological Development and
Demonstration, under grant agreement no 601116.

Making	the	Cognitive	Map	Architecture	Collaborative	

The	original	Cognitive	Map	Architecture	(CMA)	allowed	a	single	robot	to	store	observations	
and	tasks	for	its	own	use.	It	allowed	the	robot	itself	to	search	observations	based	on	
temporal	and	spatial	constraints,	such	as	the	location	of	an	observed	object	at	a	specific	
point	in	time,	or	which	object	was	within	a	location	boundary.	
	
A	major	component	in	the	new	architecture	is	the	CCMCatalog.	It	can	be	viewed	as	a	shared	
memory	space	which	exists	outside	any	one	robot,	but	is	accessed	in	real-time	by	all	robots.	
Each	robot	can	enter	observations	into	the	shared	memory	and	these	observations	will	be	
tagged	by	the	robot	system	ID	and	the	ID	of	the	object	which	the	observation	describes.	
Other	robots	can	now	see	and	search	for	this	observation	and	relate	this	to	its	own	
observations	of	the	object.	
	
To	keep	track	of	objects	the	concept	of	object	identity	is	introduced.	This	way,	two	robots	
can	add	observations	about	an	object	they	observe	and	at	some	point	they	can	agree	that	

	 	
	
	 	 CoCoMaps	Project		|		CMLabs		|		IIIM	
	

4	 	 CCM	Architecture	Draft	Implementation		

these	observations	are	in	fact	relating	to	the	same	object	by	creating	a	shared	object	
identity.	This	can	either	be	from	a	list	of	predefined	identities	(such	as	employees	in	a	
company)	or	dynamically	created	identities	(objects	present	in	the	scene).	
	
Each	object	is	tracked	in	the	scene	map.	Each	robot	has	its	own	view	of	the	map	and	their	
own	location	within	it	and	these	views	can	be	synchronised	in	the	CCMCatalog	to	enable	the	
robot	to	agree	on	the	location	of	an	object.	If	they	do	not	agree	they	can	initiate	a	
negotiation	which	may	result	in	a	recalibration	of	their	own	map	view	in	relation	to	the	other	
robot’s	map,	or	it	may	result	in	either	an	agreement	or	disagreement	with	the	other	robot	
about	the	object’s	location.	Whether	they	agree	or	not	can	be	recorded	in	the	CCMCatalog	
as	an	observation’s	consensus	value	and	each	robot	can	put	in	their	own	confidence	value,	
which	will	be	used	by	the	robots	during	the	negotiation.	

CCMCatalog	–	Overview	

The	CCMCatalog	implements	a	shared	memory	space	that	exists	outside	any	single	robot,	
and	can	be	accessed	in	real-time	by	any	robots	that	are	part	of	the	CCM.	Each	robot	can	
enter	data	-	called	"observations"	-	into	the	CCM,	which	will	automatically	be	tagged	by	the	
robot's	unique	identifier	(UID)	and	the	UID	of	the	object	which	the	observation	describes.	
When	an	entity	or	event	is	logged	in	the	CCMCatalog	by	one	robot	the	other	robots	can	see	
it,	search	for	the	object	described,	and	relate	it	to	their	own	observations.	As	a	result,	the	
CCMCatalog	provides	a	way	for	the	robots	to	corroborate	their	sensory	classifications	(e.g.	
whether	a	particular	person	is	present	in	the	room),	to	coordinate	their	movements	(so	as	
not	to	bump	into	each	other	or	other	objects),	and	to	negotiate	a	course	of	actions	
(operations	on	objects	in	the	environment).		
	
To	keep	track	of	objects	we	introduce	the	concept	of	a	negotiable	object	identity	in	the	
CCMCatalog.	It	works	by	allowing	two	(or	more)	robots	to	add	individual	observations	about	
any	object	in	their	surroundings	yet	at	a	later	point	agree	that	these	observations	are	in	fact	
relating	to	the	same	object,	resulting	in	a	shared	object	identity	entity	being	created.	This	
can	either	be	from	a	list	of	predefined	identities,	such	as	employees	in	a	company,	or	
dynamically	created	identities,	e.g.	objects	present	in	the	scene.		
	
One	component	of	the	CCMCatalog	keeps	track	of	the	2D	maps	of	the	surroundings	as	
reported	by	each	robot.	The	location	of	each	object	the	robots	enter	into	the	CCMCatalog	is	
tracked	in	the	robots	view	of	the	scene	map	and	the	maps	of	the	robots	are	correlated	in	the	
CCMCatalog	to	allow	translations	between	them.	The	locations	of	all	objects	and	the	robots	
themselves	are	accessible	to	all	robots	with	or	without	translation	into	their	own	map	
reference	frame.	Each	robot	has	its	own	location	and	view	within	it	that	it	can	use	to	predict	
where	objects	are,	and	multiple	views	can	be	synchronised	via	the	CCMCatalog	to	enable	the	
robots	to	agree	on	the	location	of	objects	in	the	scene.	Negotiations	about	entities	are	
initiated	if	either	robot	disagrees	about	the	identify	or	location	of	an	object,	e.g.	a	robot's	

	 	
	
	 	 CoCoMaps	Project		|		CMLabs		|		IIIM	
	

5	 	 CCM	Architecture	Draft	Implementation		

position	in	the	map,	but	also	if	an	object	listed	in	one	observation	is	predicted	by	either	
robot	to	be	the	same	object	as	referenced	in	another	one.	A	negotiation	may	result	in	(i)	an	
agreement	of	the	observations	referring	to	the	same	object,	in	which	case	a	shared	object	
identity	is	created,	(ii)	a	disagreement	that	leads	to	a	recalibration	of	e.g.	a	robot's	local	map	
view	in	relation	to	the	other	robot’s	map,	subsequently	resulting	in	agreement,	or	(ii)	it	may	
result	in	unresolved	disagreement.	Whether	the	robots	agree	or	not	is	recorded	in	the	
CCMCatalog	as	a	joint	observation’s	consensus	value,	and	each	robot	computes	its	own	
confidence	value	in	that	agreement,	which	is	used	by	the	robots	during	the	negotiation.	
	
The	robots	can	engage	in	a	joint	search	of	a	given	area	or	office,	and	they	will	dynamically	
agree	on	how	to	execute	the	search	pattern,	using	the	CCMCatalog's	negotiation	
mechanism.	The	negotiation	algorithm	takes	into	account	the	areas	of	the	space	which	has	
most	recently	been	observed	and	which	areas	compliments	the	most	recently	searched	
areas	best.	Because	a	robot’s	vision	will	be	degraded	while	it	moves	the	robots	will	attempt	
to	agree	that	only	one	robot	will	move	at	any	given	time,	but	any	robot	can	choose	to	ignore	
this	and	move	independently	if	agreement	is	not	reached.	

CCMCatalog	Implementation	

The	CCMCatalog	is	implemented	in	C++	within	the	same	architectural	framework	on	which	
Psyclone	is	built.	This	makes	them	instantly	compatible	and	allows	a	system	designer	using	
CCM	to	place	the	CCMCatalog	component	either	inside	one	of	the	robots	or	outside	on	a	
separate	computer.	Either	way,	logically	the	CCMCatalog	does	not	belong	to	any	single	robot	
and	no	robot	has	more	access	or	rights	to	the	component	than	any	other	robot.	
	
As	such,	multiple	independent	Psyclone	systems	will	have	equal	access	to	the	single	
CCMCatalog,	allowing	them	to	create	new	objects,	enter	observations,	query	existing	data	
and	negotiate	about	data	and	tasks	using	Collectors	and	Negotiators	running	locally	inside	
each	robot’s	Psyclone	system.	Each	Collector	and	each	Negotiator	has	a	direct	line	of	
communication	with	the	CCMCatalog	across	the	network	and	all	communication	is	
synchronised	to	the	nearest	microsecond.	No	robot	has	the	ability	to	communicate	directly	
with	any	other	robot,	all	data	and	negotiation	goes	through	and	is	logged	by	the	
CCMCatalog.	Currently	the	CCMCatalog	is	programmed	in	C,	to	make	it	very	efficient	for	
searching	and	querying	observations	efficiently.	Any	other	technology	would	be	slower	
when	going	to	thousands	of	observations.	
	
The	CCMCatalog	contains	a	number	of	distinct	handlers	of	information	and	operations,	
which	will	now	be	described.		
	
Maps	
The	CCMCatalog	can	have	a	number	of	maps,	each	with	specifications	on	how	they	relate	to	
each	other.	One	map	could	be	a	building	schematic	and	related	ones	could	be	more	detailed	

	 	
	
	 	 CoCoMaps	Project		|		CMLabs		|		IIIM	
	

6	 	 CCM	Architecture	Draft	Implementation		

maps	of	each	room,	for	example.	Each	robot	will	also	have	its	own	map	of	its	own	
environment	and	these	will	be	matched	with	the	CCMCatalog	based	on	observations.	Each	
observation	will	relate	to	one	map	by	ID	and	can	be	queried	from	another	map’s	point	of	
view.	Visual	maps	can	also	be	requested	for	operator	monitoring	viewing.	
	
Objects	and	Identities	
An	observation	about	an	object	can	be	entered	into	the	CCMCatalog	without	yet	knowing	
the	identity	of	the	object.	The	identity	can	be	associated	later	on	and	each	robot	can	in	
principle	associate	its	own	view,	i.e.	the	robots	don’t	initially	have	to	agree.	Once	the	
identity	of	an	object	has	been	agreed	this	identity	will	be	associated	with	the	object	for	past	
observations	as	well.	An	object	can	have	any	type	and	new	types	can	be	created	on	the	fly.	
Standard	types	include	humans	and	robots,	but	the	robots	can	at	any	point	decide	to	create	
a	new	type	such	as	chair	or	table.	
	
Storing	Observations	
Observations	of	a	range	of	types	can	be	collected	and	stored	in	the	CCMCatalog.	A	Location	
observation	contains	the	X	and	Y	coordinates	of	the	object’s	centre	point	in	a	specific	map	
and	also	contains	an	optional	size	(width,	height)	estimation.	Other	types	of	observations	
could	be	of	type	Dimension,	String,	Integer,	Time,	etc.	The	observations	would	traditionally	
be	collected	from	data	flowing	in	the	individual	robots	Psyclone	system	by	a	CCMCollector	
which	will	also	add	the	system’s	own	ID	and	other	metadata	such	as	timestamp,	confidence	
and	additional	data	which	may	later	on	be	of	interest.	Observations	are	usually	collected	
several	times	per	second	and	the	CCMCatalog	will	manage	the	memory	usage	by	keeping	all	
observations	for	a	period	and	after	this	summarise	them	into	fewer	data	points	which	are	
kept	and	stored	on	disk.	
	
Retrieving	Observations	
Any	system	connected	to	the	CCMCatalog	can	retrieve	and	query	observations	using	a	rich	
query	specification.	This	includes	querying	observations	by	type,	time	period	and	system	ID.	
Each	observation	type	will	handle	querying	of	values	from,	to	and	between	which	for	
location	observations	would	be	an	X,Y	square,	but	for	other	types	of	observations	means	
something	different.	The	system	is	set	up	so	custom	and	more	complex	observation	types	
can	be	added	later	on	while	still	being	entered,	stored	and	queried	using	the	same	and	
existing	mechanisms.	
	
Negotiation	
When	two	or	more	robots	disagree	on	observations	they	enter	into	a	managed	negotiation	
phase	which	may	result	in	a	settled	agreement	or	may	result	in	a	decision	to	disagree.	What	
the	robots	individually	do	afterwards	is	up	to	them.	The	negotiation	goes	through	a	number	
of	steps	and	robots	can	choose	to	skip	any	step	or	exit	the	negotiation	at	any	time.	First	of	
all,	each	robot	needs	to	provide	a	confidence	level	which	tells	the	other	robots	how	
confident	this	robot	is	that	what	they	say	or	ask	for	is	best.	Once	all	the	confidence	votes	are	

	 	
	
	 	 CoCoMaps	Project		|		CMLabs		|		IIIM	
	

7	 	 CCM	Architecture	Draft	Implementation		

in	the	robots	can	choose	to	select	the	winner	or	carry	on.	If	they	carry	on	the	negotiation	will	
be	marked	as	in	disagreement	and	a	CCMCatalog	arbitrator	is	created.	It	will	investigate	the	
data	available	to	see	how	closely	the	robots	agree	and	if	they	are	close	enough	it	will	make	a	
choice	of	a	winner	and	tell	everybody	that	they	are	roughly	in	agreement	using	a	consensus	
estimate.	If	the	robots	now	agree	they	can	end	the	negotiation	and	accept	the	winner.	If	
they	continue	to	disagree	or	the	data	is	not	close	enough	the	arbitrator	will	look	for	the	
maximum	consensus	and	remove	outliers	from	the	negotiation	and	repeat	the	consensus-
based	negotiation.	The	robots	will	be	informed	and	again	they	can	chose	to	agree	or	not.	If	
this	does	not	work	a	non-consensus-based	winner	will	be	chosen	and	the	negotiation	will	
finish.	Robots	can	then	choose	what	to	do	with	this	information.	
	
Operator	Views	
The	CCMCatalog	offers	a	rich	API	for	an	external	operator	to	query	the	information	of	a	
system.	It	can	provide	a	Web	browser	view	of	mapping	and	object	information	including	
identities	and	object	locations	within	the	map,	but	also	supports	the	same	custom	query	
structure	as	above,	available	as	Web	APIs	to	any	third	party	software	which	supports	HTTP	
queries.	
	
Operator	Interaction	
Both	the	Web	interface	and	the	Web	API	supports	the	operator	pushing	information	and	
events	into	either	the	CCMCatalog	and	the	individual	Psyclone	systems.	Such	information	
could	be	to	offer	corrections	of	erroneous	data	such	as	location	of	objects	or	the	fact	that	a	
human	has	entered	the	scene	which	the	robots	didn’t	discover	yet.	Such	information	can	
either	be	used	directly	by	the	robots	or	be	recorded	as	passive	data	events	for	subsequent	
analysis	of	performance	and	accuracy.	

	 	

	 	
	
	 	 CoCoMaps	Project		|		CMLabs		|		IIIM	
	

8	 	 CCM	Architecture	Draft	Implementation		

	

	

	
	

	
	
	
	
	
	

APPENDIX	1:	Details	of	Current	State	of	
Implementation	

	
	
	
	
	
	
	

	 	

	 	
	
	 	 CoCoMaps	Project		|		CMLabs		|		IIIM	
	

9	 	 CCM	Architecture	Draft	Implementation		

	

	

The	state	of	the	CCMCatalog	and	the	associated	components	at	the	time	of	the	first	draft	
release	is	as	follows.	
	
CCMCatalog	and	CCMProxy	
The	initial	version	contains	all	the	features	described	above	and	works	as	a	standalone	
component	with	which	the	individual	systems	connects	to	via	the	CCMProxy	catalog.	The	
network	communication	is	a	little	bit	cumbersome	and	we	plan	to	revisit	this	before	the	final	
release.	The	CCMCatalog	currently	supports	all	the	observation	types	needed	for	the	project	
such	as	Location,	Dimension,	String,	Integer,	Float	and	Time	and	all	can	be	stored	and	
queried	fully	with	each	observation	object	able	to	deal	with	the	query	in	its	own	custom	
way.	Currently	the	modules	communicating	with	the	local	CCMProxy	catalog	all	need	to	
provide	the	system	ID	which	we	plan	to	centralise	for	ease	of	use.	Short-term	observation	
storage	is	complete,	but	the	long	term	summarised	storage	to	disk	still	needs	some	work.	
	
CCMCollector	
The	CCMCollector	catalog	is	able	to	pick	up	data	flowing	in	the	local	system	and	convert	
these	to	observations	to	be	sent	to	the	CCMCatalog	via	the	local	CCMProxy.	It	supports	
dynamic	conversion	of	data	entry	names	and	types	such	as	mapping	from	a	data	entry	called	
‘xpos’	of	type	string	to	the	observation	data	entry	‘x’	of	type	integer.	This	mapping	
information	can	be	specified	at	runtime.	At	the	moment	this	component	needs	to	know	the	
system	ID	of	the	robot	–	we	hope	to	move	this	to	the	CCMProxy	shortly.	
	
Negotiators	
Currently,	data	and	task	negotiation	is	done	using	a	custom	module	and	the	plan	is	to	allow	
the	robot	modules	themselves	to	negotiate	using	a	more	versatile	API.	Negotiation	right	now	
mainly	covers	observations,	tasks	work	reasonably	well,	but	need	more	work	and	we	need	
this	in	place	for	Demo	1.	
	
Next	steps	
The	project	is	moving	rapidly	towards	Demo	1	which	involves	all	areas	of	the	CCMCatalog,	
CCMCollector	and	Negotiators.	Most	of	the	outstanding	tasks	described	in	the	previous	
section	will	need	to	be	completed	before	the	demo	and	we	will	undoubtedly	find	more	areas	
needing	work	as	we	start	to	exercise	the	system	properly.	
	
	
	
	

