Powering the Al Revolution™

Psyclone Platform

System documentation

Communicative Machines

Last updated: 19 July 2018

Proprietary
Hardware Tools & Tech

Handheld o Audio &
Devices Video

Robotics

Automation

Simulation Research
Prediction Tools

Visuali- Human
zation Interface

Contents

INEFOAUCTION .ttt sh ettt s e et e e bt e sb e e s ae e sab e st e e b e e b e eabeenbeesmeeeneeenneen 5
[T T=T o 1 o = SO PPt 6
Supported Platforms and Programming LANGUAEEScccuveeiircriieeiiiiieeeeeiiieeeesitieeessieeeessveeeesssnenesssnes 6
PrEIEQUISITES ...ttt ettt e ettt et e e e e e bbbt e et e e e s e aa bbb teeeee s e aasbetaeeeesesanssbaaeeesesssannnnnes 6

PSYCIONE OVEIVIEW ... eeiiiie ettt ettt e e et e e e et e e e e e bte e e e ebteeeeebaeeeeabteeeeansteeeesnstaeeeanssaeesansseeesannes 7
(T B o 3 Y Fo T o LU USRS 7
What can YOU dO WIth it.....ceiiieie e e s ebae e e s st e e s srtee e e sneaeeesanes 7
RUNNING PSYCIONE ..ttt et e sttt e e s st e e e s ate e e e s s baeeessbeeesssbeeesssseeessnnsenas 7

RUNNING PSYCIONE ON WINAOWSeiiiiiiiiiie ittt et e e ssatae e s e satae e s sabaeeessnsneaeenn 8
RUNNING PSYCIONE ON UNIX .. .ciiiiiiiiiiie ettt e e et e e e et e e e et e e e e eataeeeesnsaeeesnsseeesannaeeenan 8
BUIldINg PSYCIONE frOM SOUICEuuiiieiiiiie ettt ettt e et e e e e e e e e et e e e e enbaeeeenbeeeeenarenas 9
Using Visual StUdio 2015 (WINGOWS) ...cccuveeiiiiiiiiiecieeecteecieeesite e st eesive e s e e svaeesabeesseeesnteessaeesaneeas 9
USING MAKE (LINUX) ..veeiutieeiiieeiieeeitieeeieeesteeetee et e e s e e estaeesateeesaeesasesesaeessseesnsaeessseesnsseesssasssseensees 10

The Psyclone system and the PsySpec XML file......ci ittt 11
A simple PSYSPeC file: PINGPONG....cccc ittt e et e e e e aree e e e abe e e e e eataee e ennneeas 11
Message types and WIldCardsccocuieiiieiiii ettt e et e et e e e e e e e e areeas 12
Component cranks and HOrari@sviivciiie i saree e 14
One-shot vs CoONtiNUOUS COMPONENES ..ccuvviiiiiiiiiitiecieeeeeciree e sttt e e estre e e e seere e e s sabreeeesnbaeeessnsaeeesnnsseaenas 15
Local Persistent (Private) Data.......ccccccieeeieiiiieeceiiee ettt et e eetee e e etee e e e tee e e eeabae e e e eabaee s enraeeeeennenas 16
(6ol a] o Lol al=T oLl o] -] 14 L1] T TP 16
Providing custom configuration data..........cceeeieiiie i et 18
YA o LTV [g - | o] L= PP 18
PsySpec iNCludiNg Other fill@S.....ouiiii e 19
T 4 YoYU T4 o I e e o Te (1] L=T USSR 20
MESSAEZES AN SIBNAIS ...uiii it eree e e et e e e e et e e e e et ee e e e abaeeeeaabaeeeeabeeeeeeraeeeeanrenas 21
DatafloW PAramMELEISeii it e e e e e e e e e e re e e e rbaeeaenareeas 21

ATEEE/URIAY ettt ettt et e e be e s te e st e e abe e be e be e ba e baeetbeetbeebeeateesraesareeas 21
INEEIVAL .ttt st st et b e b s re e s et e e r e e neesane e 21
LI TSRO OPRSTOPPPTN 22
LT PSSR PUROTR 22
1Y D T TR TN 22
L 0o PP 22
LI OO PR ST 22

Y oY Yo IV Y Tol T I 1 <] T o = SR 23

I T4 10T - PP PP PPPPPPPPPTN 23

N]l =T 10 4= =] T T T TP 24
Y T T2 W= g1 o Lo N 24
Verbose and debuUg OULPULciiciiiii et e e e bae e e ssareeeeas 24
PsyProbe HTIML files I0CatioN.....ccccuiiiiiiiiii ettt e e s e e s s e e s s nareeas 25
(Y e o] o TN o Yo o R PSP 26
L0101 1= 4 £ TP PP OTR TP 27
OVEIVIBW ..ttt sttt b et e s s b et e s s b e e e s s bbb e e s s bbb e e e ssba e e e sbbaeeesanraeeesas 27
VA oY a1 e 0T Yo L] = USRS 30
INHNE PYthON MOGUIES ..coiieiiiie ettt e e et e e e ee e e s sab e e e s esbeee e e snbeeeeennseeas 30
Python code file MOAUIESoooeeiieeee e et e e e e e e e bae e e e areeas 31
Python import libraries and Pathscoooiiii i e e 31
Components: Modules, Whiteboards and Catalogsccueeeeeiieiieciiie e e 32
IMIOTUIBS ettt ettt e ettt e s bt e e ab e e s ab e e s bt e e sabeesabbeesnbeesabeeesabeesabeesneeesabeeenans 32
WHIEEDOAIAS ...ttt ettt et e e st e e bt e e s bt e e sabeeesabeesabeesbaeesabeeanns 32
(071 =1 (o =L U 34
S T TN O -] Lo - PR 34

LN L = I 1 =1 Lo - SRR 35

LA 20T o] 1 O 1 -] Lo - ST UTSP 36

The ReqUEST STOre Catalog......ccoccuiiiiieiiiie et e e e et ae e s e saba e e e ssabae e e esnsseaeeas 37
Creating CUSEOM Catalogs ...ccocuiiei ettt e rtte e e e tee e e et e e e e e abae e e enbeeeeennreeas 38
DY I\ LT =0T PNt 41
LI 1= TP RO 41
USEI CONTENTS ..ooiiiiiiiiiiiii i aba e s s aba s 41
PSYPIrODE WED INTEITACE ...ttt e et e e e ta e e e e aat e e e s ataeeesantseeesaaneeeaaan 42
SYSTEIM OVEIVIEW ..o eeeeeeeeeeeeeeeeeeeeeeeaaasasasaaeeeeeeanaeees 42

I Lo Yo 1T g1 4o o SRR 43
6T Y o oY o o] o 1TSS 44
IMESSAZINEG ACTIVITY .eeiiiiiiiiiiiiiiie et e e s e st e e e e e s s s saabt b e e e e esssssssbebeaeeesssnsssssenaaeeessannns 45
CommUNICAtION SEATISTICS...eiiiiiiiiei e e 47
CUSTOM VIBWS ...ttt ettt sttt e s et e s s st e e s m e e e e e s m s e e e e s mn e e e s s mne e e e snreeeesnreeeesnnnneenan 47
Creating CUSTOM tADS .ooiieiiiii e e e e et e e et e e e e raaaeeeeataeeesansraeeeansreeeaas 48
Working With private datac..ceeicciiie e e e et e e e sra e e et be e e eearaeeeas 49
Use @ ReqUESESLOrE Catalog.......ccuveiiiiiieei ittt st etre e e e tee e e et ae e s e sabae e s e nbaeeeeenreeas 49
Use a cuStom PSYProbe SUDSIEuuiiiiiieiicccceeee ettt e e e e e e e e e e e e e e 51

Distributed Psyclone systems USING NOUES......ccccuuiiiiiiiiieiiiiie e ectree e esire e st e ssere e e s sraeeessabeeeesnaneeeeeas 54
NOGES .ttt ettt et ettt b e s bt e s bt e sa et et e e bt e bt e e b e e e et e e bt e bt e beeabe e sheeeateeteenbeenheesanena 54
Process separation USING SPaACES.......uiuiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeteeeeeseseseteseseeeseeeeseeseesseseseeeseseeens 55
SPDACES e aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaananaaaans 55
=] g | Yo - [L PSPPI 55
Communication between separate PSyclone SYStEMSccoccuiiiiiiiiiieiiiiiee e e e 57
=10 g Lo =l ¢ =To LU =T A PPPPPTTPRE 57
RECOZNISING @ FEMOTE QUEIY .eiiiiiiiiiiiiiiiiieieeeieeee et ee et eeeeeeeeeeeeeeeeteeeeeeeeeseaeeeseseeeeeseseeseeeeeeseeeeeeeeeaeenes 57
THE CIMISDK TOF@IY ettt e e st e e et e e e e st e e e s abaeeessbaeeeessaeeesnnsaeeesnnsaeaenns 58
APL dOCUMENTALION ...ttt ettt et e st e e st e e sbe e sbee e sabeeesbaeesnbeesabeeesareens 58
Compiling the CIMISDK HOFarycei ittt e e et e e e e sttre e e e eatae e e ensaeeesntaeeesanssneanan 58
Using Visual Studio 2015 (WINAOWS) ..e.euiiieeiiiieeeciiee et e e esiree e s eire e e e e atee e e enreeesenreeesenrenas 58
USING IMAKE (LINUX) 1trrieieiiiieeeiiiee ettt e e e e rttte e e e etae e e et e e e e s aataeesannaaeesanssaeeeanseeeeennsaneeennsenas 59
Linking With the CIMSDK lIDrary......ccoocuiee ittt e e e sree e e sarae e e e sareeas 59
Using Visual Studio 2015 (WINGOWS) ...cccveeiiieiiiieciee e ereeeriteesteeesteeesreesvaeesaveesraeesaseesreeennas 59
USING IMAKE (LINUX) 1trreeiiiiiieeeiiiee et ee ettt e et e e sttte e e e tae e e et e e e esnateeesansaaeesensteeesanseeeeennseneeennsenas 60
USING the CIMSDK TIDIArycveeii ettt e et e e e et e e e e te e e e eeabae e e esabaee e eenbaeeeennrenas 60
(011 YD G o= 1 [o= TP PP PSPPI 61
USE CSES ittt e et e e e e s e et et e e s e e e et e e e e e s e are et e e e e s e s aarrnee 62
Integration of third-party appliCatioNsceeiiieiiii i 62

(G gTe e Y- [o] o 1111 1 =S EPR 62
AgeNnt-based SIMUIATIONeiiiee e e e e e e e e e e e abe e e e eabee e e eeabeeeeeenreeas 63
INEEIACKIVE FODOTS. c..eeiiiieieeee ettt r e s s e ere e sreesaee e 63
TULOMTAIS ottt ettt sttt e bt e s bt e s bt e st s bt e bt e b e be e s ae e e an e e n e e reesreenane e 64
Creating your firSt PSYCIONE SYSTEMcccuiiiiiciiiie ettt et e e e ra e e e eearae e e entaeeeenaaeeaeas 64
Adding YOUIr OWN MOAUIES ..ottt e e e e are e e e et e e e e earee e e enbee e e eenbeeeeennrenas 66
Creating PYthon MOAUIES..........uiii ettt et e e e et e e e e aba e e e eeabaeeeesntbeeesansaaeaean 68
INHNE PYthON MOGUIES ..cceeeiiiee et e e s bee e e et ae e s e sbeee e e sabaeeeenareeas 68
Python code file MOAUIEScoooeeiiii e see e s e rae e e e eareeas 69
Python import libraries and Paths ... e a e 69
Creating exterNal MOAUIES...........uiiiiee e e e e e e e bre e e e e e e e s e nnreaeeeeas 70
Creating YOUr OWN CAtAlOES ...uvvviieiiiiie ittt ee ettt e et e e ta e e e e ratr e e e e ratseeeensaeeesntaeeeennssneenas 72
Add custom data in PSYPIODEcoociiiiiiciie e ee e et e e e aba e e e e earaeas 74
Add a cuStomM tab iN PSYPIODEcciiiiieecee et et e e aae e e e 75
Example of @ PSySpec for @ large SYSEEMci ittt ettt e e e e e 76

CM LABS

Powering the Al Revolution™ Introduction -- Licensing

Introduction

Psyclone is a platform engineered to support large-scale modular applications and integration of
disparate software and hardware products. It provides developers with the ability to create a few or
thousands of modules, running on a single computer or a grid of heterogeneous systems,
communicating with each other using messaging and signalling in a context sensitive publish/subscribe
(PubSub) environment. And it provides admins and integrators with a production-ready environment for
integrating own and third-party software components in a near real-time system with live monitoring
and built-in load balancing.

Examples of applications of the Psyclone platform are:

Grid-based live data analysis (more details) — the system read live data from the network and applied a
pipeline of algorithms with branching to processing the data in near real-time. The data flowed between
modules using messages and the flow itself was adjusted at runtime based on a set of global contexts.
Each module applied a specific algorithm to the data, but during times of heavier resource use lower
power algorithms were applied to keep up with the incoming dataflow. The output data was sentto a
database and also made available as a stream of data over the network.

Agent-based simulations (more details) — a large system with hundreds of modules was distributed
across a number of computers, but configured by a single configuration file and monitored via the
PsyProbe web interface. To synchronise the processing of all the modules signals were used to inform
the whole system of the next time step in the simulation which made it possible to allow some steps to
take longer and use more accurate algorithms. Each entity in the simulation was represented by around
10 modules which worked together as a mini system within the larger architecture. Custom visualizers
were created in PsyProbe to show the state of each entity rather than just the modules.

Interactive robotics (more details) — the CoCoMaps project used the Psyclone platform to create robots
that could communicate with multiple humans and collaborate with the humans and other robots on
completing dynamically specified tasks. Each robot ran its own Psyclone system which included a ROS
interface, multi-camera vision, face and emotion recognition, speech recognition and generation,
dialogue and task planning and navigation control. Multiple independent Psyclone systems used an
external Psyclone Catalog to negotiate about observations, roles and tasks.

Some of the unique selling points of Psyclone are:

A unique publish/subscribe architecture with

o Single point of start-up configuration

o Dynamic add/change/remove at runtime
Multi-OS (Windows, UNIX) and multi-language (C++, Python, Java) in the same system
Near real-time rerouting of local or global dataflow based on context, data and resources
Dynamic switching of algorithms based on context, data and resources
Web-based operator and monitoring interface with custom plug-ins

CM LABS

Powering the Al Revolution™ Introduction -- Licensing
Licensing
Psyclone is released under a dual licence — LGPL Open Source for academic and commercial use alike
and a Commercial licence which includes support and priority of change requests. Psyclone includes the
CMSDK library which is released separately under a BSD licence. Both are standard for these licenses in
general terms except for the addition of the CADIA Clause:

- CADIA Clause: The license granted in and to the software under this agreement is a limited-use
license. The software may not be used in furtherance of: (i) intentionally causing bodily injury or
severe emotional harm to any person; (ii) invading the personal privacy or violating the human
rights of any person; or (iii) committing or preparing for any act of war.

Supported Platforms and Programming Languages

Psyclone currently runs on Windows 7 and later and compiles in Visual Studio 2015 and later. It runs on
recent Linux and other X86 compliant UNIX systems and compiles with GCC 5+ and GLIBC 2+. The
roadmap includes supporting the Mac OSX platform as well.

Prerequisites

Psyclone itself doesn’t require any third-party libraries (other than the included CMSDK) to compile or
to run. On Windows the standard Visual Studio libraries are dynamically linked and on Linux it uses
pthread, dl and rt.

CM LABS

Powering the Al Revolution™ Psyclone overview -- What is Psyclone

Psyclone overview

What is Psyclone

Psyclone is a platform which allows developers to create and execute modules which subscribe to input
data and produce output data in a publish/subscribe system. A module can be very simple or run
hundreds of lines of code using multiple threads and it can even be embedded into another existing
application. A module can subscribe to input data based on type and its subscription can change
dynamically over time depending on global contexts or even be rewritten completely at runtime.

A Psyclone system can contain hundreds or thousands of modules and each module will contain one or
more crank functions which are called to process input data and optionally output results of this
processing. Other more advanced modules (called Catalogs) can interface with other systems and/or
store data which can be queried by any other module using a simple query language.

A full Psyclone system can run on a single Windows or UNIX computer or span many (mixed OS)
computers where its components (modules and catalogs) are distributed either manually or
automatically — and the components can even be moved to other computers at runtime for load
balancing.

Psyclone is a commercial grade platform which offers process separation and segmentation which
means that it is often used to mix commercial grade modules with experimental and/or academic code.
If one module misbehaves or crashes the rest of the system can be protected from this event and the
unfortunate module can simply be restarted to allow the system to continue operating as normal.

What can you do with it
The Psyclone platform specifically targets large modular and scalable applications with a high volume
throughput of heterogeneous data. Application types include

e Single computer standalone applications

e Single computer integration systems linking multiple and otherwise incompatible third-party
applications

e Dynamically scalable modular systems with thousands of modules being load balanced across
many heterogeneous physical and/or virtual computer systems

e Near real-time systems requiring awareness of real and CPU time with the ability to dynamically
adapt to resource shortages or dataflow delays

Psyclone supports incremental development, debugging and testing of large systems where whole areas
of functionality are implemented in draft initially and gradually fleshed out as the system complexity
grows.

The PsyProbe web interface provides the ability to monitor the dataflow of the whole system or
individual modules alike.

Special built-in modules allow the developer to record parts of or the whole dataflow from a live system
and play it back in offline mode while developing new functionality or debugging existing modules.

Running Psyclone
Psyclone currently runs on X86-based Windows and Posix-compatible UNIX platforms. The roadmap
includes supporting Mac OSX as well.

CM LABS

Powering the Al Revolution™

Psyclone overview -- Running Psyclone
Running Psyclone on Windows
On Windows you would normally run Psyclone on the command line like this:

<path>\Psyclone.exe spec=<PsySpec XML file>

The PsySpec file* contains the full system specification including all the modules and system
parameters. Some of these can for convenience also be specified on the command line:

port=<network port> defaults to 10000
html=<path to html dir> defaults to ./html

To run a Psyclone in Satellite mode (as a Node to a master Psyclone on another computer) just start up
Psyclone on the command line without any parameters or optionally specify the port if different from
port 10000:

<path>\Psyclone.exe [port=<network port>]
Running Psyclone on UNIX
On UNIX you would normally run Psyclone on the command line like this:

<path>/Psyclone spec=<PsySpec XML file>

The PsySpec file* contains the full system specification including all the modules and system
parameters. Some of these can for convenience also be specified on the command line:

port=<network port> defaults to 10000
html=<path to html dir> defaults to ./html

To run a Psyclone in Satellite mode (as a Node to a master Psyclone on another computer) just start up
Psyclone on the command line without any parameters or optionally specify the port if different from
port 10000:

<path>/Psyclone [port=<network port>]

* For more information about the content of the PsySpec file please see the PsySpec section.

CM LABS

Powering the Al Revolution™ Psyclone overview -- Building Psyclone from source
Building Psyclone from source
Psyclone itself consists of 5 projects:
e CMSDK is the core library providing OS dependent functionality and lots and lots of the base
code.
e Psyclone is the main executable, links with CMSDK
e System provides components such as Whiteboards, Catalogs, etc. which are loaded by Psyclone
when the PsySpec defines one or more of these. It only links with CMSDK and builds a single
DLL.
e Examples provides example modules which are loaded by Psyclone when the PsySpec defines
one or more of these. It only links with CMSDK and builds a single DLL.
e External Modules shows how third-party programs can link with CMSDK and connect to a
running Psyclone system - i.e. these modules actually run inside the third party executable.

The Python2 and Python3 projects are used to port important parts of CMSDK to Python 2.x and 3.x
using SWIG. These libraries can then be used
a) for accessing CMSDK functionality from within a Python program
b) by the PythonLink DLLs which Psyclone loads to enable users to write whole modules in just
Python 2 or 3.

You need to have Python 2.7 and/or 3.5 installed for either or both 32-bit and 64-bit versions to compile
these.

Using Visual Studio 2015 (Windows)

In the Open Source distribution of Psyclone find the Visual Studio solutions file in the top directory
called Psyclone.vs2015.sIn. Open this in Visual Studio 2015 and compile the whole project either in
Debug or Release mode. To build the SSL version of Psyclone select either Release SSL or Debug SSL. For
this to work the following path must exist and contain the OpenSSL include files:

..\.._libs\OpenSSL\openssl-1.0.2g-vs2015\include for 32 bit
..\.._libs\OpenSSL\openssl-1.0.2g-vs2015\include64 for 64 bit

and the library files

..\.._libs\OpenSSL\openssl-1.0.2g-vs2015\1ib for 32 bit
..\.._libs\OpenSSL\openssl-1.0.2g-vs2015\1ib64 for 64 bit

To use modules written in the Python language you will need to build either the Python2Link and/or the
Python3Link DLLs. You do this by selecting them in the Solution Explorer, right click and select Build or
Rebuild. For this to work you will need Python 2 and/or 3 installed in either 32 and/or 64-bit versions in
the following directories:

C:\Python27 64-bit version of Python 2.7
C:\Python27-32 32-bit version of Python 2.7
C:\Python35 64-bit version of Python 3.5
C:\Python35-32 31-bit version of Python 3.5

Other versions and locations can be used by editing the Visual Studio CMSDKPY2, CMSDKPY3,
Python2Link and Python3Link project files.

CM LABS

Powering the Al Revolution™ Psyclone overview -- Building Psyclone from source
Using Make (Linux)
In the Open Source distribution of Psyclone find the main Makefile in the top directory called Makefile.
On the command from this directory line issue the command

make to build everything for release
make debug to build everything for debug

To build the SSL version of Psyclone run either

make ssl to build everything for release including SSL support
make ssldebug to build everything for debug including SSL support

For this to work the SSL development libraries must be installed on the computer (used via Issl and
Icrypto).

To use modules written in the Python language you will need to build either the Python2Link and/or the
Python3Link DLLs. You do this by running

make python2 to build all files needed for Python 2 integration in release
make python2 debug to build all files needed for Python 2 integration in debug
make python3 to build all files needed for Python 3 integration in release

make python3 debug to build all files needed for Python 3 integration in debug

For this to work you will need Python 2 and/or 3 packages installed in the following directories:
PYTHON2INCLUDE=-I/usr/include/python2.7
PYTHON3INCLUDE=-I/usr/include/python3.4m
PYTHON2LIB=-1python2.7
PYTHON3LIB=-1python3.4m

Other versions and locations can be used by editing the CMSDK/Makefile.sys file entries for these.

10

CM LABS

Powering the Al Revolution™ The psyclone system and the PsySpec XML file -- A simple PsySpec file: pingpong

The Psyclone system and the PsySpec XML file

A running Psyclone system will usually contain a number of components (modules, Whiteboards,
Catalogs), some of these provided as part of the system and some created using the SDK by users of the
system. When starting up Psyclone an XML-based configuration file called a PsySpec can be specified on
the command line which tells Psyclone which components to start up and how the data should flow
between them.

The PsySpec file is written in XML and forms the blueprint of the system architecture at start-up time
including which components to run and the dataflow between them. Once Psyclone is running the
system can dynamically create new modules without these being specified in the PsySpec.

A simple PsySpec file: pingpong
A simple pingpong PsySpec could look like this:

<psySpec>
<module name="Ping">
<trigger name="Ready" type="Psyclone.Ready" />
<trigger name="Ball" type="ball.1" />
<crank name="Ping" function="Ping" />
<post name="Ball" type="ball.2" />
</module>
<module name="Pong">
<trigger name="Ball" type="ball.2" />
<crank name="Pong" function="Ping" />
<post name="Ball" type="ball.1l" />
<post name="Done" type="Psyclone.Shutdown" />
</module>
</psySpec>

This spec creates two simple modules, one called Ping and the other called Pong. They are both created
the built-in crank function called Ping which means that no user code is required to run this system.

The dataflow between the modules goes as follows:

1) On system startup the Psyclone system itself posts the Psyclone.Ready message

2) Immediately the Ping module is triggered with this message as input

3) Once this message has been processed Ping posts an output message with type ball.2
4) Immediately the Pong module is triggered with the ball.2 message as input

5) Once this message has been processed Pong posts an output message with type ball.1
6) Immediately the Ping module is triggered with the ball.1 message as input

7) Once this message has been processed Ping posts an output message with type ball.2

And this back-and-forth flow continues until 100,000 messages have been received after which the Pong
module posts a message with type Psyclone.Shutdown and the system shuts down. Every 10,000
messages the current throughput performance it logged to the console in lines like:

[1] 28/06/2018 ©8:44:11.323.934 [Ping] Got msg 40000, avg msg time: 89.4us, avg msg age: 89.0us (1.lus faster)...

To run this in Psyclone use the following command line:

Psyclone spec=pingpong.xml

11

CM LABS

Powering the Al Revolution™ Tha pPsyclone system and the PsySpec XML file -- Message types and wildcards
The system would run for a while and then exit, producing the following console output:

28/06/2018 08:44:03.947.650 Psyclone Node starting on port 10000...

[0] 28/06/2018 ©8:44:04.047.825 Parsing configuration and setting up system...

[0] 28/06/2018 ©8:44:04.051.347 *** Single Node ready, continuing system setup ***

[1] 28/06/2018 ©8:44:04.051.455 Success synchronising ID Manager...

[1] 28/06/2018 ©8:44:04.051.502 Configuring local node...

[1] 28/06/2018 ©8:44:04.053.195 Creating Module 'Ping'...

[1] 28/06/2018 ©8:44:04.053.286 SetupQ need more memory size: 5378344 use: 5377048 need: 2352

[1] 28/06/2018 ©8:44:04.058.505 PsySpace 'Root' (1) starting up...

[1] 28/06/2018 0©8:44:04.161.087 Configured Module 'Ping' (1) successfully

[1] 28/06/2018 ©8:44:04.161.204 Creating Module 'Pong'...

[1] 28/06/2018 08:44:04.162.020 Configured Module 'Pong' (2) successfully

[1] 28/06/2018 ©8:44:04.162.130 Sending config to all other nodes...

[1] 28/06/2018 08:44:04.162.232 **¥¥¥kikik QYSTEM READY *¥*kiok okt

[1] 28/06/2018 08:44:04.162.274 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k ok ok ok 3k 3k %k %k %k k ok ok

[1] 28/06/2018 ©8:44:04.163.309 Space 'Root' connected

[1] 28/06/2018 0©8:44:04.163.233 [Ping] Started running (internal)...

[1] 28/06/2018 ©8:44:04.163.288 [Ping] Starting 10 cycles test...

[1] 28/06/2018 ©8:44:04.163.577 [Pong] Started running (internal)...

[1] 28/06/2018 ©8:44:05.937.545 [Ping] Got msg 10000, avg msg time: 88.7us, avg msg age: 88.4us...

[1] 28/06/2018 ©8:44:07.724.488 [Ping] Got msg 20000, avg msg time: 89.3us, avg msg age: 88.7us (©.7us slower)...
[1] 28/06/2018 ©8:44:09.535.502 [Ping] Got msg 30000, avg msg time: 90.5us, avg msg age: 90.4us (1.2us slower)...
[1] 28/06/2018 ©8:44:11.323.934 [Ping] Got msg 40000, avg msg time: 89.4us, avg msg age: 89.0us (1.lus faster)...
[1] 28/06/2018 ©8:44:13.051.856 [Ping] Got msg 50000, avg msg time: 86.4us, avg msg age: 86.1lus (3.0us faster)...
[1] 28/06/2018 ©8:44:14.799.030 [Ping] Got msg 60000, avg msg time: 87.4us, avg msg age: 87.2us (1.0us slower)...
[1] 28/06/2018 0©8:44:16.566.469 [Ping] Got msg 70000, avg msg time: 88.4us, avg msg age: 88.1lus (1.0us slower)...
[1] 28/06/2018 ©8:44:18.309.929 [Ping] Got msg 80000, avg msg time: 87.2us, avg msg age: 86.9us (1.2us faster)...
[1] 28/06/2018 ©8:44:20.100.120 [Ping] Got msg 90000, avg msg time: 89.5us, avg msg age: 89.2us (2.3us slower)...
[1] 28/06/2018 ©8:44:21.848.279 [Pong] Got msg 100000, avg msg time: 87.4us, avg msg age: 88.0us (2.lus faster)...
[1] 28/06/2018 08:44:21.848.336 3k 3k 3k 3k ok 3k ok 3k ok ok ok ok ok 3k 3k 3k 3k 3k 3k sk ok ok ok ok ok ok ok ok 5k %k 5k k kK k ok k

[1] 28/06/2018 ©8:44:21.848.526 *¥*¥xkkikkx QYSTEM SHUTDOWN **¥ ok ks

[1] 28/06/2018 0©8:44:21.848.620 Module Pong requested system shutdown, shutting down...

[1] 28/06/2018 0©8:44:21.898.589 Local Node is preparing to shutdown...

[1] 28/06/2018 ©8:44:21.899.068 PsySpace 'Root' (1) shutting down...

[1] 28/06/2018 ©8:44:22.001.197 PsySpace 'Root' has shut down (1, ©00000000057DBBO)

28/06/2018 08:44:22.959.571 Node Networking is shutting down...

28/06/2018 08:44:23.379.153 Psyclone Node on port 10000 has shutdown successfully...

The first part of the output up until SYSTEM READY shows the system starting up and configuring itself
according to the PsySpec. After this the Psyclone.Ready message is posted and the system starts
running, outputting the stats after each batch of 10,000 messages. Then the system receives the
message to shut down and it goes through the process of doing just that.

Message types and wildcards

All messages in Psyclone have a type in dot notation. The names of each part or level are ASCII strings
and can have any length. They would usually be application dependent and be used to semantically
group different messages, such as

input.video.raw
input.audio.raw
input.audio.normalised

Types are normally applied to output messages posted by components and used in triggers as part of
the subscriptions for Psyclone to deliver a copy of the message to any other component which has
asked for it. If no other component has a matching trigger then the message will be discarded (or saved
in shared memory if it has a time-to-live (ttl) specification).

A trigger specification can be either for the complete type name input.audio.raw or it can use wildcards
like input.audio.* or input.*.raw. The trigger specification also needs a name so the code can identify
the trigger in case a module has more than one. The reason for this separation of type and name is so
the dataflow can be altered by only editing the PsySpec file and without requiring the actual code to be
changed. For example, a video processing module may initially receive raw video frames:

12

CM LABS

Powering the Al Revolution™ Tha pgyclone system and the PsySpec XML file -- Message types and wildcards

<trigger name="VideoFrame" type="input.video.raw" />

but later the developer wants to test the same code on smoothed video frames, so all they need to do is
change the spec to

<trigger name="VideoFrame" type="input.video.smoothed" />

and the system will simply feed the output of different module in instead. This is because the code for
the component only ever refers to the name and not the type:

if (inMsg = api->waitForNewMessage(100, triggerName)) {
if (stricmp(triggerName, "Ready") == 0) {

Similarly goes for output messages

<post name="OutputFrame" type="input.video.filtered" />

where the post type can be changed in the spec without having to change the code as the code only
ever refers to the name:

api->postOutputMessage("OutputFrame", outMsg);

which returns an integer value informing the calling code how many messages were posted.
If this integer is negative the post failed for the following reason:

POST_FAILED -1 Error occurred while trying to post the message
POST_NOSPEC -2 The crank tried to post a message before a trigger arrived

POST_OUTOFCONTEXT -3 The crank is no longer active because the context has changed
and is no longer active

The post spec in the PsySpec can have the following parameters

name= A module-internal alias specified by the crank of the module. Any crank connected to
Triggers with that name will be activated

type= This is the triggertype associated with the post. The type is the relevant feature that the
module subscribes to

maxage= In addition to having the correct type, a post's age has to be below this number to wake
up the module. This can be used to skip triggers if the system is lagging behind

after= determines the time that the module waits after receiving the trigger to activate the
crank

13

CM LABS

Powering the Al Revolution™ The psyclone system and the PsySpec XML file -- Component cranks and libraries
Component cranks and libraries
Each component in the PsySpec will have at least one crank function to run. Module can specify one or
more crank functions as part of their subscription, Whiteboards use a built-in crank function and
Catalogs specify their crank function as the Type of the Catalog.

A crank function is the function name in the code library (a DLL or SO) which will be called when a
trigger message arrives. Psyclone contains a number of built-in cranks such as the Ping crank above and
these do not need to specify the library. For all other components a library needs to be created using
the CMSDK, compiled and specified to inform Psyclone about which file on disk contains the compiled
code for the crank.

Libraries containing crank functions are specified using one or more library entries in the spec:

<library name="MyExamples" library="Examples" />

The library name is how subsequent cranks refer to the library and the library entry tells Psyclone which
actual file to load. On Windows Psyclone would look for the file Examples.dll in the current directory
and on UNIX Psyclone would look for the file libExamples.so. (In addition, when running a debug build of
Psyclone it will first look for the debug version of the library by appending Debug to the filename such
as ExamplesDebug.dll or libExamplesDebug.so).

Once the library has been defined cranks can refer to the library names:

<crank name="Ping" function="MyExamples::Ping" />

A custom library can be created using just the CMSDK Open Source library, i.e. Psyclone does not need
to be installed on the computer to compile a library, nor does it need the Open Source version of
Psyclone to compile or run.

A crank function is normally defined in a C++ header file:

#include "PsyAPI.h"
namespace cmlabs {
extern "C" {
D11Export int8 MyCrankFunction(PsyAPI* api);
. more crank function definitions ...

}

} // namespace cmlabs

and implemented in a C++ source file:

14

CM LABS

Powering the Al Revolution™ The psyclone system and the PsySpec XML file -- One-shot vs continuous components
#include "MyCranks.h"

namespace cmlabs {

int8 MyCrankFunction(PsyAPI* api) {
DataMessage* inMsg, *outMsg;
const char* triggerName;
if (api->shouldContinue()) {
if (inMsg = api->waitForNewMessage(100, triggerName)) {
api->logPrint(1, "Received trigger message: %s", triggerName);
outMsg = new DataMessage();

. add custom data entries to outMsg ...
outMsg->setInt("mycount", 3);
outMsg->setString("mytext", "my data");
api->postOutputMessage("MyPost”, outMsg);

}
¥

return 0;

}

} // namespace cmlabs
(For Python-based modules please refer to the Python sections.)

A crank function takes one input parameter which is a pointer to a PsyAPI object. This object can be
used by the function to communicate with the Psyclone system including waiting for new messages and
posting output messages, but also for reading and changing parameters, retrieving or querying
messages from other components, etc.

The definitions of crank functions need to have the D11Export classifier which makes them visible to
Psyclone when loading the DLL/SO.

One-shot vs continuous components

This particular crank function runs once and returns, to be called again when the next trigger arrives. If
you change the if shouldContinue() line to a while instead you can then keep the component running
and do other stuff while it waits for more messages to arrive:

while (api->shouldContinue()) {
if (inMsg = api->waitForNewMessage(100, triggerName)) {
. handle incoming message ..

}

else {
. do something else every 100ms ...

}

. do something on every cycle even if a message arrived ...

The main difference between the two is that the continuous component keeps hold of its OS thread
until the module is not supposed to run anymore whereas the thread running the one-shot component
is returned to the thread pool to be used again for triggering other components. Psyclone will
automatically create enough threads to always have a few spares in the thread pool and with a large
number of components in a system a large number of threads could be used which might affect
performance.

However, for components with significant amounts of initialisation work or large volumes of local
persistent data it may be beneficial to make them continuously running.

15

CM LABS

Powering the Al Revolution™ Tha psyclone system and the PsySpec XML file -- Local Persistent (Private) Data
Local Persistent (Private) Data
Any component in Psyclone can optionally choose to save its local data to persistent storage. This is
useful for one-shot modules which exit in between processing trigger messages and for modules which
might be migrated to another computer. It also offers the component the ability to show its local data in
the Data tab in the PsyProbe web interface, if a mimetype if provided when saving the data.

Data is saved as a binary blob. To save local data to persistent storage a component can use the PsyAPI
object:

api->setPrivateData("My Data", str.c_str(), str.length());
To read the data back in at a later time:

data = api->getPrivateDataCopy("My Data", size);
And to save the data and make it visible in PsyProbe:

api->setPrivateData("My Data", str.c_str(), str.length(), "text/html");

Component parameters

The PsySpec allows the designer to define one or more parameters for each component which are
available to the crank code via the PsyAPI object. These can be static strings, integers, floats and
collections of these and each parameter is interactive in that the local component or other components
can tweak the value of a parameter, much like a knob on a control panel.

Simple parameters are defined like this:
<parameter name="MyStringValue" type="String" value="Some value" />

<parameter name="MyIntegerValue" type="Integer" value="5" />
<parameter name="MyFloatValue" type="Float" value="0.2" />

and accessed like this:
const char* str = api->getParameterString("MyStringvValue");
int64 val = api->getParameterInt("MyIntegervValue");
float64 fval = api->getParameterInt("MyFloatValue");
The code can check if a named parameter exists
int64 exists = api->hasParameter("SomeParameterName");
and the code can change a parameter value using the setParameterXXX versions of these functions:
bool setParameter(const char* name, const char* val)
bool setParameter(const char* name, int64 val)
bool setParameter(const char* name, float64 val)
Any parameter can be reset to its initial value using

bool resetParameter(const char* name)

16

CM LABS

Powering the Al Revolution™ Tha psyclone system and the PsySpec XML file -- Component parameters
The crank code can ask about the type of a parameter

uint8 type = api->getParameterDataType("SomeParameterName")
which will return a number from this list:

#define PARAM_STRING
#define PARAM_INTEGER
#define PARAM_FLOAT
#define PARAM_STRING_COLL
#define PARAM_INTEGER_COLL
#define PARAM_FLOAT_COLL

AUV WNR

The numeric parameters can specify a valid range:

<l-- any integer in range, initial value lowest value -->
<parameter name="MaxCount" type="Integer" value="[0:110]"/>

<!-- any integer in range, initial value 55 -->
<parameter name="MaxCount" type="Integer" value="[0:110]=55"/>

<!-- any integer in range, random initial value -->
<parameter name="MaxCount" type="Integer" value="[0:110]=*"/>

<!-- any float in range -->
<parameter name="Interval" type="Float" value="[-2.5:2.5]"/>

and even specify a step value

<!-- any integer in range, in steps of 2 -->
<parameter name="MaxCount" type="Integer" value="[0:110:2]"/>

Step values can also be specified on non-interval numeric parameters

<!-- any integer, start value 0, in steps of 2 -->
<parameter name="MaxCount" type="Integer" interval="2" value="10"/>

For all parameters with step values the code can tweak the parameter up or down instead of setting the
new value outright:

api->tweakParameter("MaxCount", 2);
where the second parameter can be a positive or negative integer.
The following list types are supported:

<!-- any integer in list -->
<parameter name="Interval2" type="Float" value="[-2;1;3;9]"/>

<l-- any float in list -->
<parameter name="Interval2" type="Float" value="[-2.5;1.5;1.8;2.5]"/>

<!-- any string in list -->
<parameter name="Category" type="String" value="['strl';'str2';'str3']"/>

17

CM LABS

Powering the Al Fevolution™ The psyclone system and the PsySpec XML file -- Providing custom configuration data %
Y
Any of these can be queried for the current value using the normal typed getParameter API, tweaked up

or down using the tweakParameter API and set outright using the setParameter API.

Providing custom configuration data
Part of a component’s PsySpec configuration is an optional setup specification:

<module name="MyModule">
. triggers, posts, cranks, etc.
<setup>
. custom data in valid XML format
</setup>
</module>

The crank code can then read this data using:

std::string xml = api->getParameterString("componentsetup”);

The CMSDK provides an easy to use XML parser originally created by Frank Vanden Berghen which you
can use like this:

XMLResults xmlResults;
XMLNode node, subNode, mainNode = XMLNode::parseString(xml.c_str(),
"setup"”, &xmlResults);

if (xmlResults.error != eXMLErrorNone) {
if (xmlResults.error == eXMLErrorFirstTagNotFound) {
api->logPrint(@, "Setup error, main tag '<setup>' not found");

return -1;
}
else {
api->logPrint(@, "setup parsing error at line %i, column %i:\n %s\n",
xmlResults.nLine, xmlResults.nColumn,
XMLNode: :getError(xmlResults.error));
return -1;
}

After this the XMLNode object can be queried using functions like getChildNode and getAttribute.

PsySpec variables

The PsySpec usually contains lots of information about components and lots of component variables. It
is often beneficial to the developer to be able to specify certain data globally at the top of the file so it
can be changed in one place and used universally.

So for example if two modules have parameters which contain the same values

<module name="MyModulel">
<parameter name="SystemID" type="Integer" value="2" />
<parameter name="SystemName" type="String" value="Bill" />
<parameter name="SystemDir" type="String" value="/home/user/M1" />

18

CM LABS

Powering the Al Revolution™ Tha psyclone system and the PsySpec XML file -- PsySpec including other files
<module name="MyModule2">
<parameter name="SystemID" type="Integer" value="2" />
<parameter name="SystemName" type="String" value="Bill" />
<parameter name="SystemDir" type="String" value="/home/user/M2" />

it could be easier to just define the common parts at the top of the file

<variable name="SystemID" value="2" />
<variable name="SystemName" value="Bill" />
<variable name="MainDir" value="/home/user" />

and then use these variables in the PsySpec

<module name="MyModulel">
<parameter name="SystemID" type="Integer" value="%SystemID%" />
<parameter name="SystemName" type="String" value="%SystemName%" />
<parameter name="SystemDir" type="String" value="%MainDir%/M1" />

<module name="MyModule2">
<parameter name="SystemID" type="Integer" value="%SystemID%" />
<parameter name="SystemName" type="String" value="%SystemName%" />
<parameter name="SystemDir" type="String" value="%MainDir%/M2" />

The variable extraction is done using a simple string search and replace so it can be used for any part of
the spec, not just variables, but also component names, crank information, triggers, etc.

Just make sure that the content of the variables fit into the XML at the point where the variable is
specified — as the full XML will not be parsed until after all variables have been replaced with their
actual values.

PsySpec including other files

A PsySpec file can grow to become very large and/or multiple PsySpec files may have sections in them
which are common to them all. In this case it can make managing the specs easier to simply include one
or more external files into a PsySpec as if it had been one big file in the first place.

This works similarly to include directives in other products such as C language code and to do this simply
add the include line in a PsySpec file like this:

<include file="system.xml" />

Just make sure that the content of the included file fits into the XML at the point where the include is
specified — as the full XML will not be parsed until after all files have been included and all variables
have been replaced with their actual values.

19

CM LABS

Powering the Al Revolution™ The Pgyclone system and the PsySpec XML file -- Passthrough modules
Passthrough modules
Modules would normally specify at least one crank function in their spec, but if they do not a very
simple default crank function will be used instead which simply passes through data messages. For
every incoming trigger every post is activated with a copy of the incoming message.

This is very useful if one simply wants to change the type of a message:

<module name="DefaultRoleDetector">
<trigger name="NowDefaultRole" type="Self.Role.Searcher" />
<post name="DialogOff" type="dialog.off"/>

</module>

or to split a message into multiple messages, all containing the same data:

<module name="DefaultRoleDetector">
<trigger name="NowDefaultRole" type="Self.Role.Searcher" />
<post name="DialogOff" type="dialog.off"/>
<post name="AutoNavigationOn" type="navigation.auto.on" />
<post name="StopMicrophone" type="cmd.input.audio.off" />
</module>

It can also be used to introduce a delay in a message path:

<module name="FaceFinder">
<trigger name="Start" type="Psyclone.Ready" after="5000" />

<post name="Face" type="Input.Face.Start" />
</module>

or to post messages at a regular interval:

<module name="PostTester">
<trigger name="Ready" type="Psyclone.Ready" />
<trigger name="Post" type="Regular.Post" interval="1000" />

<post name="Post" type="Post.Data.1" />
</module>

Custom data entries can be added to the output messages as well, either as a quick string key and value:

<module name="FaceFinder">
<trigger name="Start" type="Psyclone.Ready" after="5000" />
<post name="Face" type="Input.Face.Start" contentkey="MyKey" content="Myval" />

</module>

or as a more elaborate entry adding several different types of content:

<module name="FaceFinder">
<trigger name="Start" type="Psyclone.Ready" after="5000" />

<post name="Face" type="Input.Face.Start">
<content key="MyKey" type="String" value="MyVal" />
<content key="MyKey" type="Integer" value="5" />
<content key="MyKey" type="Float" value="3.21" />
</post>
</module>

20

CM LABS

Powering the Al Revolution™ The Psyclone system and the PsySpec XML file -- Messages and signals
Messages and signals
Most commonly components communicate via subscriptions to Messages by type. However, they can
also communicate via Signals which are generally faster and do not use complicated routing
mechanisms.

Signals can be imagined like a music conductor stick - it is a 'beat' which a module sends out to make
other modules do things at (approximately) the same time. So any module subscribed to the signal A
will be triggered very soon after the 'conductor' module sends out the signal A. No subscription
checking is involved so signals are generally faster (and less flexible) than trigger messages. Signals are
also independent from contexts.

This is often used in simulations where modules have to do things for the next simulation timestep - and
then wait for the next step before continuing.

The following shows an example like the Ping/Pong messaging system above, but this time using signals:

<module name="Ping">
<trigger name="Start" type="Psyclone.Ready" />
<crank name="signal" function="Signal" />
<signal name="Output" type="My.Signal.1" />
<signal name="Input" type="My.Signal.2" />
</module>
<module name="Pong">
<trigger name="Ready" type="Psyclone.Ready" />
<crank name="signal" function="Signal" />
<signal name="Input" type="My.Signal.1" />
<signal name="Output" type="My.Signal.2" />
<post name="Done" type="Psyclone.Shutdown" />
</module>

Dataflow parameters
The subscription entry for a component in the PsySpec can specify additional parameters to control the
flow of data beyond the publish/subscribe mechanism.

After/delay
A module can ask for a trigger message to be delayed for a set amount of time before the trigger is
delivered like normal:

<trigger name="Start" type="Psyclone.Ready" after="5000" />

This trigger will be delivered after a 5 seconds pause.

Interval
A component specification can ask for an artificial trigger message to be sent at a regular interval:

<module name="PostTester">
<trigger name="Ready" type="Psyclone.Ready" />
<trigger name="Post" type="Regular.Post" interval="1000" />
<post name="Post" type="Post.Data.1" />

</module>

21

CM LABS

Powering the Al Revolution™ The Psyclone system and the PsySpec XML file -- Filters
Please note that the module must be triggered by a real message first before the timed simulated

trigger will start.

To

Usually posted messages are delivered based on other modules’ subscriptions, but the output module
can specify that a copy of the message be delivered directly to a named component regardless of
whether that component has asked for it or not:

This is most commonly done for modules that want to post output messages to a specific Whiteboard:

<whiteboard name="WB1" />

<module name="PostTester">
<post type="Data.Web" to="WB1" />

In this case, the output message will be delivered directly to the Whiteboard, but will also be delivered
to any other component subscribing to it.

The same result could be achieved by posting without the to entry, but then in the Whiteboard
subscribing to the message by type instead:

<whiteboard name="WB1">
<trigger type="Data.Web" />
</whiteboard>

<module name="PostTester">
<post type="Data.Web" />

Filters
Triggers can employ various filters to be more selective about the messages it is triggered with.

Maxage
In a time sensitive system a trigger can specify a maximum age to prevent being triggered by a message
which was posted too long ago:

<trigger name="input" type="msg.1l" maxage="20" />

This example tells the subscription engine to not trigger the module if the incoming message is more
than 20ms old by filtering it out.

From
A trigger can filter out any message which does not come from a particular named component in the
system:

<trigger name="input" type="msg.1l" from="MyOtherModule" />

This example tells the subscription engine to not trigger the module if the incoming message was not
posted by the component called MyOtherModule by filtering it out.

To
A trigger can filter out any message which was not addressed to a specific named component which
used the to parameter in its post:

22

CM LABS

Powering the Al Revolution™ The Psyclone system and the PsySpec XML file -- Tagging
<trigger name="input" type="msg.1l" to="SomeModule" />

This example tells the subscription engine to not trigger the module if the incoming message was not
posted with a to specification of SomeModule by filtering it out.

Tag
A trigger can filter out any message which was not tagged with a specific named tag when being posted:

<trigger name="input" type="msg.1l" tag="SomeTag" />

This example tells the subscription engine to not trigger the module if the incoming message was not
tagged with SomeTag by filtering it out.

See the section on Tagging for more information about this topic.

More advanced filtering
More advanced trigger filters can be specified on a trigger to filter out based on other aspects of the
incoming message:
<module name="Simple" node="Node@">
<trigger name="t1" type="blal" maxage="500">
<l-- additional filtering such as -->
<filter type="equals" key="MyKey" value="Vall" />
<filter type="haskey" key="SomeKey" />
</trigger>

</module>

Filters can specify the following types:
Haskey — this type checks if the incoming message contains a user defined entry with that name.

Equals — this type checks if the string value of this entry is exactly equal to this value specified. This
comparison is case sensitive and does not use wildcards.

Notequals — this type is the opposite of the Equals type.

Equalsnumeric — this type checks if the float value associated with the key is equals to the float value
specified in the filter. If either value is not a floating point number Psyclone will attempt to convert the
value (from a string or integer) to a floating point number first.

Notequalsnumeric — this type is the opposite of the Equalsnumeric type.

Greaterthan — this type checks if the float value associated with the key is greater than the float value
specified in the filter. If either value is not a floating point number Psyclone will attempt to convert the
value (from a string or integer) to a floating point number first.

Lessthan — this type checks if the float value associated with the key is less than the float value specified
in the filter. If either value is not a floating point number Psyclone will attempt to convert the value
(from a string or integer) to a floating point number first.

Tagging
Output messages can in addition to a type have an optional tag. This is a way of grouping messages
relating to a specific topic or identity across all message types. So if a system has several modules

23

CM LABS

Powering the Al Revolution™ Tha Psyclone system and the PsySpec XML file -- System parameters
outputting a specific message type all messages produced as a consequence of this message at any
point in the forward chain of components will also carry this tag.

<module name="TagPost">

<post name="pl" type="bla4" tag="mytag" />
</module>

And at any point a filter can be put onto a trigger so only matching tags will be allowed through:

<module name="TagTrigger">
<trigger name="t1" type="bla4" tag="mytag" />

</module>

Separately, a component can set its own tag on output messages. This tag is a 32-bit unsigned integer
value and if set on a message every module receiving this message will automatically carry this tag over
to the output messages posted as a consequence of this input message.

So if module A sets a tag = 10 on its output message and if modules B and C are both triggered by this
message, any messages which B and C post will automatically carry tag = 10 too — and any posts by
modules triggered by B and C’s output messages will too, etc.

System parameters

Main system port

You can change the main network port of a Psyclone instance by specifying the new port on the
command line (... port=6789 ...). You can, however, also program this into the PsySpec by adding the
port number to the top PsyProbe XML tag:

<psySpec port="6789">

This changes the port which other Psyclone instances or systems use to communicate with this instance
and it also sets the port number to use for accessing the PsyProbe web interface via a browser:

http://<hostname>:6789/

Verbose and debug output

The default verbose and debug output levels are both set to 1 for all topics. This will produce a minimal,
but useful set of output logging to the console and to the log file. For less output which only contains
errors use a level of 0 and for more output levels can go up to 9.

Increasing levels of output will output increasing amount of logging and this can be done per topic or for
all topics. Furthermore, it can be done system-wide and for individual components. To set the output
levels for an individual component add the verbose and/or the debug parameters in the PsySpec for
that component:

<module name="Simple" verbose="3" debug="2" logfile="../log2.txt">

24

CM LABS

Powering the Al Revolution™

The Psyclone system and the PsySpec XML file -- System parameters

System-wide it can be set on the main PsyProbe XML tag:

<psySpec verbose="5" debug="0" logfile="../log.txt">

Levels can also be specified on the command line and can either be for all topics:

. verbose=5 debug=0 ...

or per topic:

. verbose-network=5 debug-memory=0 ...

The list of topics are:

Topic name Verbose cmdline entry ~ Debug cmdline entry
System | verbose-system debug-system
Network | verbose-network debug-network
Memory | verbose-memory debug-memory
Process | verbose-process debug-process
Sync verbose-sync debug-sync
Node | verbose-node debug-node
Space | verbose-space debug-space

Component verbose-component debug-component
Subscriptions | verbose-subscriptions debug-subscriptions
Triggers | verbose-triggers debug-triggers
Timing | verbose-timing debug-timing

PsyProbe HTML files location

Psyclone will attempt to auto detect the location of the HTML files required for running the PsyProbe
web interface. Usually this would be in a directory called ‘html’ below the location of the Psyclone
executable and Psyclone will look for this directory in the current and parent directories.

If the location is not automatically found the user can specify the location either on the command line:

. html=<dir>/html ...

or in the PsySpec by adding a PsyProbe entry:

<psyprobe location="some/dir/html" />

25

CM LABS

Powering the Al Revolution™ Tha Psyclone system and the PsySpec XML file -- System parameters
PsyProbe port
Normally the PsyProbe network port is the same as the main Psyclone port (with auto detection of the
protocol). To change the PsyProbe port to a different port (and different from the main messaging port)
this can be specified in the PsyProbe entry:

<psyprobe port="6789" />

The PsyProbe entry can contain other information such as aliases and posts — please see the PsyProbe
section for more information.

For more advanced system configuration topics such as using Nodes and Spaces, please see the relevant
sections for more information.

26

CM LABS

Powering the Al Revolution™ Contexts -- Overview

Contexts

Contexts are used to make a module behave differently in different situations. For example, a vision
module would want to use a different algorithm if the scene is bright from if the scene is dark. Instead
of managing this manually inside the code of the module, contexts allow a module to change from one
type of operation to another by listening to an external signal.

Overview

The way contexts are typically used is that in each Context a module will have a separate set of inputs
and outputs. By looking at currently active context and a module's spec, anyone, including the system
designer and other runtime modules, can become aware of what the module is doing.

The system as a whole will usually have a hierarchy of contexts and many of these may be active at the
same time.

Contexts can manage a collection of modules by simultaneously turning them on and off and to make
them behave differently in different situations. Contexts are very helpful to manage the complexity of a
large number of modules that typically are not all relevant for the operation of a system at the same
time. Psyclone modules can be context-driven in that each module can be set up to have a specific
context in which it can run. If that context is not active, the module will not be woken up with any
messages it has subscribed to.

If no context is specified for a module their subscription default to belong to the context Psyclone.Ready
which is always active as long as the system is running normally.

Contexts are hierarchically defined, forming a tree. For example, this is a context tree:

SoB.[Alive, Dead]
SoB.Alive.[Awake, Asleep]

In this context tree, the root is called SoB (short for state of being). The root has two branches, Alive and
Dead. The branch Alive has two leafs, Awake and Asleep. (Dead has no branches.) To see how this tree
is used at run-time, let's look at a hypothetical system that uses this context tree. When the system
starts up the context SoB is posted by some bootstrapping module. When this happens another module
(called e.g. BeingAlive.100) posts SoB.Alive if the system is considered "alive", otherwise it posts
SoB.Dead (the module would presumably run some tests to see if the system actually qualifies for the
"alive" label). If SoB.Alive is posted, then another module (called e.g. BeingAwake.200) posts
SoB.Alive.Awake if it considers the system to be "awake" (whatever that means in this hypothetical
system).

Now we can look at how modules use these contexts to specify when they should be active and when
not. For example, we might have a module called LookAround.150, whose job it is to move the sensors
of a hypothetical being in the direction of a sound when it receives one. This module should not be
running if the being is dead or if the being is asleep. So when we choose a context for this module, we
choose the context in which it should be active, which is in this case SoB.Alive.Awake.

In the psySpec you can then have a module which is only active, i.e. should only run and receive trigger
messages when the system is Awake:

27

CM LABS

Powering the Al Revolution™ Contexts -- Overview
<module name="Looking">
<context name="SoB.Alive.Awake">
<trigger name="t1l" type="blal" />
<crank name="c1" function="1lib::function" />
<post name="pl" type="bla4" />
</context>
</module>

and another module which is active when the system is Alive:

<module name="Breathing">
<context name="SoB.Alive">
<trigger name="t1l" type="blal" />
<crank name="c1" function="1lib::function" />
<post name="pl" type="bla4" />
</context>
</module>

When a module goes out of context it should stop running. This will be signalled to the code in that the
function call to api->shouldContinue() returns false.

One module can also do different things in different contexts:

<module name="Metabolism">
<context name="SoB.Alive.Awake">
<trigger name="t1" type="blal" />
<crank name="c1" function="1lib::functionl" />
<post name="pl" type="blad4" />
</context>
<context name="SoB.Alive.Asleep">
<trigger name="t2" type="blal" />
<crank name="c2" function="1lib::function2" />
<post name="p2" type="blad" />
</context>
</module>

which practically means that a different crank is called for the other context, but both cranks have
access to the module’s private data.

Multiple roots are allowed. If you post for example the context SoB.Alive.Asleep and then post the
context System.Ok, the two context trees have different roots, and will thus co-exist with no
interference.

Notice that context trees are designed by the user. The only restrictions on them is that they be dot-
delimited to designate branches.

Contexts are changed (i.e. announced to the system) by using a special post flag:

<post name="done" context="SoB.Alive.Asleep" />

which immediately makes causes any module and subscriptions to the other contexts with the same
higher root to become inactive, such as

28

CM LABS

Powering the Al Revolution™ Contexts -- Overview
e SoB.Dead
e SoB.Alive.Awake
e SoB.Alive.Asleep.Snoring

but the higher up contexts will still be active, such as

° SoB
e SoB.Alive

A module can also subscribe to be triggered by a context change:

<trigger name="t1l" context="SoB.Alive.Asleep" />

When a context is posted, the context gets "switched" only if a current branch in the tree gets replaced
by a new branch. For example, if the current context is SoB.Alive.Asleep and SoB.Alive.Awake gets
posted, the context will be switched. And if SoB.Alive.Asleep.REMsleep gets posted, this context will be
switched on for any module which had listed this as their context. But if SoB.Alive gets posted while
SoB.Alive.Asleep is active, nothing happens.

Internal modules will automatically be using the correct crank in the correct phase in the currently
active context. If they go out of context they will stop running and wait to be in context again.

External modules will have to detect whether they are in context at all, and if so, which one. The PsyAPI
object has several functions such as:

PsyContext getCurrentTriggerContext();
std::string contextToText(PsyContext context);

If a component attempts to post a message while its crank is no longer in context the function

int32 postOutputMessage(const char* postName = NULL, DataMessage* msg = NULL);

returns -3 (POST_OUTOFCONTEXT).

29

CM LABS

Powering the Al Revolution™ Python modules -- Inline Python modules

Python modules

In addition to modules written in C++ Psyclone also supports running modules written in the language of
Python, both version 2.x and 3.x. This is done by allowing the crank function to be written in and loaded
from Python.

Crank functions for C++ modules use the PsyAPI object from the CMSDK library to communicate with
Psyclone and this in turn makes use of a large proportion of the other objects and functions in the
CMSDK library. Full support for the CMSDK library has been added to Python by adding a SWIG interface
— which means that any Python code can use the PsyAPI and other objects and functions just like a C++
module would.

Where a C++ module’s crank function is specified in the PsySpec like this:

<module name="Ping">
<trigger name="Ready" type="Psyclone.Ready" />
<trigger name="Ball" type="ball.1" />
<crank name="Ping" function="Ping" />
<post name="Ball" type="ball.2" />
</module>

a Python module is almost the same except for the crank entry now referring to a Python code file:

<module name="Ping">
<trigger name="Ready" type="Psyclone.Ready" />
<trigger name="Ball" type="ball.1" />
<crank name="Ping" language="python2" script="path/to/ping.py" />
<post name="Ball" type="ball.2" />
</module>

The language can be either python2 or python3.

Inline Python modules
For simple Python modules it is even possible to write the crank code directly in the PsySpec file:

<crank name="pl" language="python2">
< [CDATA[
name = api.getModuleName()
print("Module name: %s" % name)
key = api.getParameterInt("Key")
while (api.shouldContinue()):
msg = api.waitForNewMessage(29)

if msg != None:
mykey = msg.getInt("MyKey")
if mykey ==
mykey = key

triggerName = api.getCurrentTriggerName()

api.logPrint(1, "Got Key: " + str(mykey))

outMsg = cmsdk.DataMessage()

outMsg.setInt("MyKey", mykey + 1)

api.postOutputMessage("Output", outMsg)
11>

</crank>

The inline Python code will automatically load all the libraries needed and create the PsyAPI object
called api.

30

CMLABS

Powering the Al Revolution™

Python modules -- Python code file modules v,

Y
Please note: Because Python is very sensitive about indentation, please take care that the inline Python
code keeps these intact. Psyclone will when loading the module attempt to adjust the indentation.

Python code file modules
The equivalent simple Python module written in external files looks like this:

def PsyCrank(apilink):
api = cmsdk.PsyAPI.fromPython(apilink);
name = api.getModuleName();
print("Module name: %s" % name)
key = api.getParameterInt("Key");
while (api.shouldContinue()):
msg = api.waitForNewMessage(290)
if msg != None:
mykey = msg.getInt("MyKey")
if mykey == 0:
mykey = key
triggerName = api.getCurrentTriggerName()
api.logPrint(1, "Got Key: " + str(mykey))
outMsg = cmsdk.DataMessage()
outMsg.setInt("MyKey", mykey + 1)
api.postOutputMessage("Output"”, outMsg)

The first two lines are needed in this case (they are added automatically for inline modules) and there is
no need to Import the CMSDK library as Psyclone will do this automatically.

Python import libraries and paths
When Psyclone runs any Python, both inline and in a code file, module it needs to have access to

1) The correct version of Python installed correctly
a. Correct major version, either 2.x or 3.x
b. Correct bitness, either 32 or 64-bit
c. The python DLLs in the search path
2) The CMSDK binary library and its Python interface file
3) Any libraries which the Python module may import in addition

The CMSDK binary library is a file called _cmsdk.pyd on Windows and _cmsdk.so on Linux. This file is
accompanied by the Python interface file called cmsdk2.py for Python2 and cmsdk3.py for Python3. In

addition, for Debug builds of Psyclone debug versions of these file will be used (_cmsdkdebug.pyd/so
and cmsdk2/3debug.py).

These files will either need to be
a) inthe same directory as the Python program as specified in the crank:

<crank name="Ping" language="python2" script="path/to/ping.py" />

b) in the same directory as the Psyclone binary used to run the system

¢) and if not, an additional parameter can be specified on the module to tell Psyclone where to
find these:

<parameter name="libpath" type="String" value="../CMSDK/bin/Win32" />
<crank name="Ping" language="python2" script="path/to/ping.py" />

31

CM LABS

Powering the Al Revolution™ Components: Modules, Whiteboards and Catalogs -- Modules

Components: Modules, Whiteboards and Catalogs
The PsySpec can specify three types of components:

Modules are the standard component which predominantly is triggered by new messages which are
processed, producing output messages for posting and optionally can remain in the crank function to do
other work in between.

Catalogs can do exactly the same, but are designed to in addition receive synchronous queries from
other components to which they will respond with an answer. The most common types of Catalogs are
for data storage and queries (like a database or datawarehouse), but they could also be conduits to
other systems such as forwarding queries to a Google Search or Face Recognition server and providing
synchronous replies to the component which requested the data.

Whiteboards are a special type of Catalog which store and work with Messages only. They receive
messages by trigger (or direct messaging), store these in memory and other component can then use a
sophisticated query language to retrieve copies of stored message based on a set of filters. In addition,
the PsyProbe interface for Whiteboards provides the user with a nice visual way of viewing messages
with filtering capabilities.

Modules
Modules are specified in the PsySpec like seen above:
<module name="Ping">
<trigger name="Ready" type="Psyclone.Ready" />
<trigger name="Ball" type="ball.1" />
<crank name="Ping" function="Ping" />

<post name="Ball" type="ball.2" />
</module>

Specifically, the function code they call are specified as part of the subscription and as seen later a
module can specify multiple crank functions and subscriptions for different contexts.

Whiteboards
Whiteboards have their own syntax in the PsySpec and can be as simple as:

<whiteboard name="WB1" />

This defines the Whiteboard component without any triggers so it will only ever receive messages
addressed specifically to it, such as:

<module name="Ping">

<post name="Ball" to="WB1" type="ball.2" />
</module>

This way of directly messaging another component happens in addition to the subscription-based
routing of the message so in addition to delivering the message to the Whiteboard WB1 Psyclone will
still look for components who have subscribed to this message type.

Most commonly, however, Whiteboards will have a long list of triggers to hover up messages without
the posting components needing to be aware of it:

32

CM LABS

Powering the Al Revolution™ Components: Modules, Whiteboards and Catalogs -- Whiteboards

<whiteboard name="WB2">
<trigger name="Ball" type="ball.1" />
</whiteboard>

When the Whiteboard stores messages in its internal database it automatically indexes based on
message creation time, so other components can retrieve message copies based on time. The retrieve
specification is usually specified mostly in the PsySpec like this:

<module name="Test">
<trigger name="Ready" type="Psyclone.Ready" />
<retrieve name="rl1" source="WB1" maxcount="10" />

and Test module crank can then execute this retrieve by name:

std::list<DataMessage*> retrievedMsgs;
uint8 status = api->retrieve(retrievedMsgs, "ri");

The std::list will contain a copy of the retrieved messages and the status reply will indicate the success
or failure of the operation:

#define QUERY_FAILED

#define QUERY_TIMEOUT

#define QUERY_NAME_UNKNOWN
#define QUERY_COMPONENT_UNKNOWN
#define QUERY_QUERYFAILED
#define QUERY_SUCCESS

#define QUERY_NOT_AVAILABLE
#define QUERY_NOT_REACHABLE

ONOOUVTDA WN R

This retrieve operation retrieves the last messages received regardless of type, up to a maximum of 10
messages.

Retrieves can be done based on keys other than time. If the Messages contain a user entry called Count
of type Integer the Whiteboard can specify this as a searchable key:

<whiteboard name="WB2" key="count" keytype="integer">

<trigger name="Ball" type="ball.1" />
</whiteboard>

which creates a separate searchable index (in addition to time).
The module can now specify a retrieve based on this key:
<retrieve name="r2" source="WB1" key="count" keytype="integer" />

and execute it in its code, providing a from (2) and to (8) value, returning maximum of 4 messages:

status = api->retrieveIntegerParam(retrievedMsgs, "r2", 2, 8, 4);

This could additionally also contain a maximum message age in microseconds:

status = api->retrieveIntegerParam(retrievedMsgs, "r2", 2, 8, 4, 100000);

33

CM LABS

Powering the Al Revolution™ Components: Modules, Whiteboards and Catalogs -- Catalogs
Catalogs
Catalogs are more flexible in terms of how they can be queried and what type of data they can return.
Catalogs are specified in the PsySpec like this:

<catalog name="MessageDataCatalog" type="MessageDataCatalog">

where the type in this case refers to the Catalog’s crank function.

Psyclone has a number of built-in Catalogs with useful features. These are described next.

The File Catalog
The File Catalog allows any module to read and write files from/to a central location without having to
worry about which computer the module is running on.

A File Catalog is defined in the PsySpec like this:

<catalog name="MyFiles" type="FileCatalog" root="./">
<parameter name="ReadOnly" type="String" value="no" />
</catalog>

The optional parameter ReadOnly defaults to 'no’, but can be set to 'yes' which will prevent write
operations.

Any crank code can access the catalog by defining a named query in the PsySpec like this:

<module name="Test">
;é;ery name="MyFiles" source="MyFiles" subdir="test" ext="txt" binary="yes" />
</mo&&ie>
And the crank code can execute the query this way:

uint32 datasize = 0;
char* result = NULL;
uint8 status = api->queryCatalog(&result, datasize, "MyFiles", "test", "read");
if (status == QUERY_SUCCESS)

api->logPrint(1, "Successfully retrieved %u bytes from file catalog...
else if (status == QUERY_TIMEOUT)

api->logPrint(1, "Retrieve 'read' timed out for file catalog...");
else

api->logPrint(1, "Retrieve 'read' failed (%u) for file catalog...
. use binary data in result ..
delete[] result;

, datasize);

, status);

which will read a file from the root dir ./, sub dir test called test.txt, i.e. ./test/test.txt.

34

CM LABS

Powering the Al Revolution™

Components: Modules, Whiteboards and Catalogs -- Catalogs
Likewise a file can be written by

char* data = utils::StringFormat(datasize, "Hello World");
status = api->queryCatalog(&result, datasize, "MyFiles", "test", "write", data, datasize);
if (status == QUERY_SUCCESS)
api->logPrint(1, "Successfully wrote %u bytes to file catalog...", datasize);
else if (status == QUERY_TIMEOUT)
api->logPrint(1, "Retrieve 'write' timed out for file catalog...");
else
api->logPrint(1, "Retrieve 'write' failed (%u) for file catalog...", status);
delete[] data;

The Data Catalog

The Data Catalog allows any module to read and write data from/to a central datastore without having
to worry about which computer the module is running on.

A Data Catalog is defined in the PsySpec like this:
<catalog name="MyData" type="DataCatalog" interval="2000" root="./mydata.dat" />

which puts the central datastore in the file ./mydata.dat and writes from memory to file every 2
seconds.

Any crank code can access the catalog by defining a named query in the PsySpec like this:

<module name="Test">
;é;ery name="MyData" source="MyData" />
</mo&bie>
And the crank code can execute the query this way:

uint32 datasize = 0;
char* result = NULL;
status = api->queryCatalog(&result, datasize, "MyData", "test", "read");
if (status == QUERY_SUCCESS)
api->logPrint(1, "Successfully read %u bytes from data catalog...", datasize);
else if (status == QUERY_TIMEOUT)
api->logPrint(1, "Retrieve 'read' timed out from data catalog...");
else
api->logPrint(1, "Retrieve 'read' failed (%u) from data catalog, ok if starting with a
fresh catalog ...", status);
delete[] result;

which will read an entry from the datastore.

35

CM LABS

Powering the Al Revolution™ Components: Modules, Whiteboards and Catalogs -- Catalogs
Likewise data can be written by

char* data = utils::StringFormat(datasize, "Hello2 World");
status = api->queryCatalog(&result, datasize, "MyData", "test", "write", data, datasize);
if (status == QUERY_SUCCESS)

api->logPrint(1, "Successfully wrote %u bytes to data catalog...
else if (status == QUERY_TIMEOUT)

api->logPrint(1, "Retrieve 'write' timed out to data catalog...");
else

api->logPrint(1, "Retrieve 'write' failed to data catalog (%u)...
delete[] data;
delete[] result;

, datasize);

, status);

The Replay Catalog

The Replay Catalog can be used in one Psyclone system to simply record certain message activity to disk
- and later in a different Psyclone system it can be used to playback these messages as they happened in
the first system.

One example could be to record all perception from a robot over a 2 minute period, such as video,
audio, sensors, etc. and potentially even the output of some of the processing of these. On a different
computer these recorded messages can be used in a simulated system to get exactly the same messages
without actually having to have the robot present and running.

The recording phase can be done by simply defining the catalog in the PsySpec and telling it what and
how much to record:

<catalog name="Replayl" type="ReplayCatalog" root="./replayl” maxsize="10240000" maxcount="2000">
<trigger name="Video" type="robot.sensor.video" />
<trigger name="Bumper" type="robot.sensor.bumper" />

</catalog>

This will receive all messages of types 'robot.sensor.video' and 'robot.sensor.bumper' and store them to
disk in ./replayl, only keeping the last 2000 messages and only keeping up to 10kb of data, whichever
limit is hit first.

Then the files can be copied to another computer and to replay the messages you simply define the
same catalog with different parameters:

<catalog name="Replayl" type="ReplayCatalog" root="./replayl">
<post name="Video" type="robot.video" />
<post name="Bumper" type="robot.bumper" />

</catalog>

This will play back the messages at the same interval they were recorded, but this time with different
message types, just the trigger/post names have to match.

36

CM LABS

Powering the Al Revolution™ Components: Modules, Whiteboards and Catalogs -- Catalogs
Two additional parameters can be used on playback

<catalog name="Replayl" type="ReplayCatalog" root="./replayl” interval="1000" rotate="yes">
<post name="Video" type="robot.video" />
<post name="Bumper" type="robot.bumper" />

</catalog>

interval="1000" overwrites the posting interval to 1 second
regardless of the recorded message timing

rotate="yes" when the last message has been replayed go back

and start playing from the beginning

The Request Store Catalog

The RequestStore Catalog can be used to collect messages from the whole system, keep the most
recent versions of them and allow anyone to request parts of or the whole message from a web
browser by easy to remember names. This means no custom programming or data in the modules at all.

An example of a RequestStore Catalog entry in the PsySpec could be:

<catalog name="RequestStore" type="RequestStore">
<trigger name="VideoFrame" type="video.output.frame" />
<trigger name="SampleXML" type="video.output.frame" />
<trigger name="SampleText" type="video.output.frame" />
<trigger name="SampleHTML" type="video.output.frame" />-->
<setup>
<store name="VideoFrame" trigger="VideoFrame" key="VideoDataFrame" keytype="data"
datatype="raw" mimetype="image/bmp" maxkeep="1" maxfrequency="1"
/>
<store name="SampleJSON" trigger="VideoFrame" mimetype="json" maxkeep="1"
maxfrequency="1" />
<store name="SampleXML" trigger="VideoFrame" mimetype="xml" maxkeep="1"
maxfrequency="1" />
<store name="SampleText" trigger="VideoFrame" mimetype="text" key="content"
maxkeep="1" maxfrequency="1" />
<store name="SampleNum" trigger="VideoFrame" mimetype="text" key="VideoWidth"
maxkeep="1" maxfrequency="1" />
<store name="SampleSize" trigger="VideoFrame" mimetype="text" key="size"
maxkeep="1" maxfrequency="1" />
<store name="SampleType" trigger="VideoFrame" mimetype="text" key="type"
maxkeep="1" maxfrequency="1" />
<store name="SampleTime" trigger="VideoFrame" mimetype="text" key="time"
maxkeep="1" maxfrequency="1" />
<store name="SampleTimeText" trigger="VideoFrame" mimetype="text" key="timetext"
maxkeep="1" maxfrequency="1" />
<!--<store name="SampleHTML" mimetype="html" key="html" maxkeep="1"
maxfrequency="1" />-->
</setup>
</catalog>

Here we see the catalog subscribing to messages like any other module, each with a trigger name as
usual.

The custom setup XML part then defines named entries ('VideoFrame', 'SampleJSON', etc.) which can be
queried by anyone like this:

GET /api/query?from=RequestStore&query=VideoFrame

The return content-type is specifically specified in the setup XML so the one calling the URL doesn't have
to know.

37

CM LABS

Powering the Al Revolution™

Components: Modules, Whiteboards and Catalogs -- Catalogs

Each store entry can have the following parameters:

name

trigger

key

keytype

datatype

mimetype

maxkeep

maxfrequency

The name used in the request

Which trigger message to get the
information from

The name of the user entry inside the
message - can be header fields such as
'time', 'type' too. 'time' will return the
number of microseconds since year O -
'timetext' will return a nicer textual
description of the date and time

The type of key

The type of binary data, mainly used for
bitmaps

The mime type used to help the browser
display the data correctly

How many messages (trigger history) to
keep

The maximum number of messages to
keep per second

Creating custom Catalogs
In addition to the built-in Catalogs users can create custom Catalogs which can be queried from any
other component using either a string-based or message-based interface.

Required

Required

If not specified the whole message is
returned as either JSON, XML, HTML or
TEXT, depending on the mimetype

Not currently used

If set to 'raw' the code knows to expect
raw pixels and need the message to
contain width and height information
too - so construct a valid bitmap format
to return. In the future we may support
other types of data types.

Required, mime types are standard
browser mime types such as
'application/json’, 'text/html’,
'text/xml', etc. Can also be short
versions, 'json’, 'xml', 'text', etc.

Default is 1, later may support
returning vectors of keys from several
historical messages

If set to 1 it will only keep 1 message
every second and ignore new messages
for that trigger until another 1 second
has passed

This section first describes how another component can query a Catalog and after that how a custom
Catalog can be created to handle such queries.

The string-based query interface is:

uint8 queryCatalog(char** result, uint32 &resultsize, const char* name,
const char* query, const char* operation = NULL, const char* data = NULL,
uint32 datasize = 0, uint32 timeout = 5000);

38

CM LABS

Powering the Al Revolution™ Components: Modules, Whiteboards and Catalogs -- Catalogs
and can be called like this:

status = api->queryCatalog(&result, datasize, "MyFiles", "test", "read");

The message-based interface allows more flexibility in that a custom DataMessage can be used to hold
the query (including any number of user entries and data types such as images, etc.) and the reply is
returned as an equally flexible DataMessage:

uint8 queryCatalog(DataMessage** resultMsg, const char* name,
DataMessage* msg, uint32 timeout = 5000);

This can be used like this:
status = api->queryCatalog(&resultMsg, "MyQueryName", queryMsg, 5000);
Status can be one of

#define QUERY_FAILED

#define QUERY_TIMEOUT

#define QUERY_NAME_UNKNOWN
#define QUERY_COMPONENT_UNKNOWN
#define QUERY_QUERYFAILED
#define QUERY_SUCCESS

#define QUERY_NOT_AVAILABLE
#define QUERY_NOT_REACHABLE

coNOUVThA WNEPRE

Custom Catalogs can be created by writing a custom Catalog crank function. This crank function works
exactly like the module crank function and a Catalog can receive and process subscription trigger
messages and post output messages. In addition it can also receive synchronous query messages to
which is should reply.

while (api->shouldContinue()) {
if (inMsg = api->waitForNewMessage(100, triggerName)) {
if (triggerName && stricmp(triggerName, "SomeTrigger") == 0) {
. process normal trigger message ...
}

else if (inMsg->getType() == PsyAPI::CTRL_QUERY) {

. process query message ...
. and then reply to the query ...

To reply to a query not requiring return data the query reference number is required and a status flag
providing information about whether the query succeeded or not.

api->queryReply((uint32)inMsg->getReference(), status);

39

CM LABS

Powering the Al Revolution™ Components: Modules, Whiteboards and Catalogs -- Catalogs + N Wy
Y
The incoming query message for string based queries will contain the textual parameters inside and the
Catalog crank can read them like this:

if (str = inMsg->getString("Subdir"))
subdir = str;
if (str = inMsg->getString("Ext"))
regext = str;
if (str = inMsg->getString("Binary"))
regbinary = (stricmp(str, "yes") == 0);
if ((str = inMsg->getString("Operation")))
regwrite = (stricmp(str, "write") == 0);

and the reply needs to be done like this:

bool queryReply(uint32 id, uint8 status, char* data, uint32 size, uint32 count);
such as

api->queryReply((uint32)inMsg->getReference(), QUERY_SUCCESS, data, size, 9);

For message-based queries the incoming query message can contain any number of custom data entries
such as text, numbers, raw data and attached messages. Replies to these should be a Data Message too
which similarly can contain any number of data entries:

bool queryReply(uint32 id, uint8 status, DataMessage* msg = NULL);

such as

api->queryReply((uint32)inMsg->getReference(), status, replyMsg);

40

CM LABS

Powering the Al Revolution™ Data Messages - Types

Data Messages

Types

Message types should follow the convention to use a dot-delimited string where the first part indicates
the root namespace, and the subsequent segments describe the type of content that the message
relates to, of increasing specificity from left to right.

Messages usually contain user data entries that contain information for the recipient of the messages
and can contain many entries of small or very large amounts of data (from integers to binary data blobs)

In the PsySpec:

<post name="exampleMsg" type="Robot.Status" />

In the code of the crank:

msg = new DataMessage();
msg->setString("RobotStatus", "Almost ready");
msg->setInt("BatteryLevel”, 78);
api->postOutputMessage("exampleMsg", msg);

User contents
Data Entries can be of types String, Int, Float, Time, Binary and Message.

You can also set entries of type arrays (integer indexes) and maps (string indexes):

msg->setInt(1l, "myarray", 2);
msg->setInt(2, "myarray", 2);
msg->setInt(3, "myarray", 2);
msg->setInt(4, "myarray", 2);
msg->setInt(5, "myarray", 2);

int val = msg->getInt(3, "myarray");

Or the whole array:
std::map<int64, int64> arr = msg->getIntArray("myarray")
msg->setIntArray("myarray2", arr)

This works for all types (int, float, string, time, data, messages) and the same for maps

msg->setInt("in", "mymap", 1);
msg->setInt("out"”, "mymap", 2);
msg->setInt("middle"”, "mymap", 3);
msg->setInt("off", "mymap", 4);

int val = msg->getInt("out", "mymap");

Or the whole array:

std: :map<std::string, int64> arr = msg->getIntMap(“mymap")
msg->setIntMap("myarray2", arr)

41

CM LABS

Powering the Al Revolution™ PsyProbe Web Interface --

PsyProbe Web Interface

PsyProbe is the main visual interface into what is happening inside a Psyclone system. Point any
standard web browser at the main Psyclone port like this

http://localhost:10000/

to get a dynamic live-updating view of all nodes, spaces and components in the system:

{:} | Auto update: .| All:

- Modes: - 1 Nodes, D selected - ----------- - oo oo oo oo Selected |- All Groups |- = -
Node 1: Main - Address: 192,168.220.1:10000, 1 Spaces, 4 Catalogs, 1 Modules Performance) Info) [#

- Catalogs:- 4 Catalogs, Oselected - --------------mmmmm - Selected |- All Groups |- = -
Catalog 1: WB1 - Msg in: 31(78.07KB) ot ol0B) — 4 active trigger(s) (0 inactive) Stored Messages)- Performance |- Activity)- Subscriptions)- &
Catalog 2: WB2 - Msg in: 21(30-38KB) o, 0l%5) - 2 active trigger(s) (0 inactive) Stored Messages)- Performance) Activity |- Subscriptions)- &
Catalog 3: MyFiles - Msg in: 21(7-02kB) 5.t 0l0B) - 3 active trigger(s) (0 inactive) Performance) Activity) Subscriptions) - [#
Catalog 4: MyData - Msg in: 3107-3%8) gut: (%) - 4 active trigger(s) (0 inactive) Performance - Activity | Subscriptions) - (&

- Modules: -1 Modules, 0 selected;--------------------"-~--~-"-----~—~--~-------------------------o--o-oo-o--o Selected |- All Groups|- [=] -
Module 5: Test - Msg in: 111558) gut: 10(1-%3%B) - 3 active trigger(s) (0 inactive) Performance)- Activity)- Subscriptions)- [#

System overview

The very top grey line shows the time and the current system uptime and a horizontal list of the nodes
with their activity levels to the left.

Each section below is hierarchical and part can be expanded and closed using the tabs and the (+) and (-
) buttons.

The System Info section has tabs for component and node communication, list of currently active and
inactive contexts and subscriptions of all components in the system.

The Nodes section lists the currently connected nodes (computers) with tabs for performance stats and
general information. The node activity level is indicated to the far right on each node line.

The Catalogs section shows a list of the catalogs in the system. Catalogs can be Whiteboards that has
tabs for stored messages, performance, recent activity and subscriptions. Other catalogs (either built-in
or custom catalogs) have tabs for performance, activity and subscriptions and these may have custom
tabs too.

Finally, the Modules section shows a list of modules in the system. Each has tabs for performance,
activity and subscriptions and these may have custom tabs too.

42

http://localhost:10000/

CM LABS

Powering the Al Revohtian™ PsyProbe Web Interface -- Tab descriptions
Tab descriptions

System Component Communication
This tab shows a matrix of the amount and speed of communication for between all the components of
the system.

System Node Communication
This tab shows a matrix of the amount and speed of communication for between all the nodes of the
system.

System Contexts
This tab shows a list of all the active and inactive contexts currently known to the system. Each context
can be expanded to show the components subscription triggers and associated posts for that context.

System Subscriptions

This tab shows a hierarchical list of all the message types known to the system and for each the
components subscription triggers and associated posts. Each trigger shown can be manually activated
with the [test] button to the right of the line, as can each post using the post line's [test] button.

Node Performance
This tab shows detailed performance stats for data input, output, queue sizes and CPU and memory
usage for the last 1 second, 10 seconds and 30 seconds.

Node Info
This tab shows the list of spaces in each node with status and stats.

Whiteboard Stored Messages
This tab shows the messages currently stored on the Whiteboard. A line of filter options is available

0| msgs | MaxSize | 1048576(bytes (1.00MB) | Maxdge 10000| ms [~10sec) o

Filter (0 of 0} | MaxCount

to specify which and how many messages to see, filtering on any textual content, count, size and age.

Component Performance
This tab shows detailed performance stats for data input, output, queue sizes and CPU and memory
usage for the last 1 second, 10 seconds and 30 seconds.

Component Activity

This tab shows the last 10 messages sent and received by the component. If you hover over the
message entry you will see as much of the message as is available to show and if clicked a new window
is opened to keep this content visible.

Component Subscriptions

This tab shows either the active or all subscriptions for the component, shown hierarchically based on
message type. Each trigger shown can be manually activated with the [test] button to the right of the
line, as can each post using the post line's [test] button.

Custom tabs

Each component can create and register their own custom tabs. An example of this is the Stored
Messages tab for Whiteboards and details on this can be found in the section on customising PsyProbe.

43

CM LABS

Powering the Al Revolution™ PsyProbe Web Interface -- Using PsyProbe
PsyProbe in the PsySpec

The user can override PsyProbe settings in the PsySpec, including the location of the built-in PsyProbe
HTML dir, adding additional ports for PsyProbe to listen to and removing PsyProbe from listening to the
main Psyclone port:

<psyprobe location="otherdir/html" port="8080" defaultport="no" />

- location overwrites htmldir, if present
- port adds a port (in addition to the main and other ports), if present
- defaultport="no" removes PsyProbe from the main port, if present

Custom subsites
Custom location aliases can be added to PsyProbe for application specific use:

<psyprobe>
<alias name="robot" location="/somedir/html" default="index.html" />
</psyprobe>

- alias subnodes adds custom dirs to PsyProbe, if present
which means that when a browser requests the url
http://computer:port/robot/anydir/anyfile
PsyProbe will return the file found in /somedir/html/anydir/anyfile.

This can be any path on the local computer.

Using PsyProbe

The main purpose of PsyProbe is to be able to track data as it flows through the system. The data
traditionally travels inside DataMessages which all have a header (much like an email) with standard
fields for time, from, to, etc. and optionally can contain user data in the form of zero or more <text key>
= <value>. The values can be either

Text

Integer

Float

Time

Raw binary data
Another DataMessage

44

CM LABS '“

Powering the Al Revolution™ PsyProbe Web Interface -- Messaging activity e
Messaging activity
A component in Psyclone (either a Module or a Catalog) can post output messages based on that
component's post entries in the PsySpec. The code will post using a name (i.e. a label) based on which
the Psyclone system will set the message type. The type is then used to figure out which other
components have registered (i.e. subscribed) to receive messages like this in the component's trigger
entriesin the PsySpec.

Using PsyProbe a human operator can keep an eye on the messages flowing into and out of a
component. This is done using the component's Activity tab:

! ___ : _;‘, el :. -{:} | Auto update: | All:

-System Info: - System uptime: 32.5226055 ------- Log |- Component Communication |- Node Communication |- Contexts |- Subscriptions |- Dataflow |- Components |-

- Nodes: - 1 Modes, D selected ----------- o mmm oo Selected |- All Groups |- [-
Node 1: Main - Address: 10.239.67.21:10000, 1 Spaces, 1 Catalogs, 1 Modules Parformance) Info) [*

- Catalogs: - 1 Catalogs, Oselected -----------------mmmmm o Selected |- All Groups |- [-
Catalog 1: CCMMaster - Msg in: 34/5-69%5) gut; 0l08) - 3 active trigger(s) (0 inactive) Cognitive Map) Log) Data) Performance) Activity) Subscriptions) [*

- Modules: - 1 Modules, O selected ----------------om- oo Selected |- All Groups |- [-

Module 2: PostTester) Msg in: 33(5-95%8) gut; 33(8-95KB] - 3 active trigger(s) (0 inactive) Log| Data) Performance tAd:ivity)l Subscriptions
Open in new window
Recen @ messages: Recent messages:
= Ko

Type From —Size Type From
Regular.Post System 2008 Sert 26
Regular.Post System 2008
Regular.Post System 2008
Regular.Post System 2008
Regular.Post System 2008
Regular.Post System 2008

Post.Data.1 PostTester 2008 Sent 262,
Post.Data.1 PostTester 2008
Post.Data.1 PostTester 2008
Post.Data.1 PostTester 2008
Post.Data.1 PostTester 2008
Post.Data.1 PostTester 2008
Regular.Post System 2008 Post.Data.1 PostTester 2008
Regular.Post System 2008 Post.Data.1 PostTester 2008 Sent ~7sec ago
Regular.Post System 2008 Post.Data.1 PostTester 2008 Sent ~8sec ago
Regular.Post System 2008 Sent ~9sec ago Post.Data.1 PostTester 2008 Sent ~9sec ago

In this example we see a system with two components; one Catalog (called CCMMaster) and one
Module (called PostTester). When we click the Activity tab for the module we see the 10 most recent
input messages and the 10 most recent output messages. This list will continuously update itself unless
you untick the Auto update box for either the module itself (green tick to the far right) or for all (the
green tick marked All in the top right corner).

If you use the mouse to hover over a message you will see a detailed view of that message including all
its user content entries. If you click the message that detailed view will open in a new window and
remain static, i.e. will not update again.

The list above will show you the source of any incoming messages, i.e. which other module or catalog
created it. In this case the Regular.Post message was generated automatically on a timer by the system,
but if we look at another component we will see the messages from the module flowing into the
catalog:

45

CM LABS (<

Powering the Al Revolution™ PsyProbe Web Interface -- Messaging activity

s 0
{:} | Auto update: | All:

------- Logl- Component Communicatiunl- Node Communicaﬁonl- Contextsl- Subscriptionsl- Dataflow |- Compone
- Nodes: - 1 Nodes, O selected -------------o oo m oo Sele(:tedl— All Groupsl— = -
Node 1: Main - Address: 10.23%.67.21:10000, 1 Spaces, 1 Catalogs, 1 Modules Performance | Info) &
- Catalogs: - 1 Catalogs, O selected ---------------ommmmm oo Sele(:tedl— All Groupsl— = -
Catalog 1: CCMMaster - Msg in: 475(32.77K) gut: 0(%B) - 2 active trigger(s) (0 inactive) Cognitiva Map) Log) Data) PerFormance) Activity) Subscri ptiuns) I
Open in new window
Recent input messages: Recent output messages:
Type Fram Size Age Type From Size Age

Post.Data.1 PostTester 200B Sent 260.489ms ago
Post.Data.1 PostTester 2008 Sent ~1sec ago
Post.Data.1 PostTester 2008 Sent ~2sec ago
Post.Data.1 PostTester 2008 Sent ~3sec ago
Post.Data.1 PostTester 2008 Seiit ~d3ec ago
Post.Data.1 PostTester 2008 Sent ~5sec ago
Post.Data.1 PostTester 2008 Sent ~Gsec ago
Post.Data.1 PostTester 2008 Sent ~7sec ago
Post.Data.1 PostTester 2008 Seiit ~Biec ago
Post.Data.1 PostTester 2008 Sent ~9sec ago

- Modules: - 1 Modules, 0 selected ---o-oooo-oo-- Sele(:tedl— All Groupsl— = -

Module 2: PostTester - Msg in: 474(92-58kB) gut; 474(32.58B) . 3 active trigger(s) (0 inactive) Log) Data) Performance) Activity) Subscriptions) (=

Open in new window

Recent input messages: Recent output messages:
Type From Size Age Type From Size Age
Regular.Post System 2008 Sent 260.489ms ago Post.Data.1 PostTester 2008 Sent 260.489ms ago
Regular.Post System 2008 Sent ~1sec ago Post.Data.1 PostTester 2008 Sent ~1sec ago
Regular.Post System 2008 Sent ~2sec ago Post.Data.1 PostTester 2008 Sent ~2sec ago
Regular.Post System 2008 Sent ~3sec ago Post.Data.1 PostTester 2008 Sent ~3sec ago
Regular.Post System 2008 Sent ~dsec ago Post.Data.1 PostTester 2008 Sent ~d4sec ago
Regular.Post System 2008 Sent ~5sec ago Post.Data.1 PostTester 2008 Sent ~5%ec ago
Regular.Post System 2008 Sent ~6sec ago Post.Data.1 PostTester 2008 Sent ~6sec ago
Regular.Post System 2008 Sent m7sec ago Post.Data.1 PostTester 2008 Sent ~7sec ago
Regular.Post System 2008 Sent ~8sec ago Post.Data.1 PostTester 2008 Sent ~Bsec ago
Regular.Post System 2008 Sent ~9sec ago Post.Data.1 PostTester 2008 Sent ~9sec ago

There are lots of other tabs to investigate. For each component you can look at that component's
subscriptions (the messages it has asked to be triggered by):

- Catalogs: - 1 Catalogs, Oselected ----------------mm oo Selectedl— All Groups |- = -

Catalog 1: CCMMaster - Msg in: 6014117-38%5) g¢; 0(08) - 2 active trigger(s) (0 inactive) Cognitive Map) Log) Data) Performance) Activity) Subscriptions) (=

Open in new window

Current Component Subscriptions [all | active]
Psyclone?
o Ready?®
= Trigger 'DefaultComponentTrigger’ on type to CCMMaster! context Psyclone.Ready | test
= Post ‘Post’ type context test
Post?
o Data'?
. it
= Trigger 'Post’ on type to CCMMaster! context Psyclone.Ready | test
= Post 'Post’ type context test

and here you can even manually activate one of the triggers by clicking the 'test' buttons. This will result
in that component receiving an empty message with that trigger name.

46

CM LABS

Powering the Al Revolution™ PsyProbe Web Interface -- Communication statistics
Communication statistics

The performance tab will describe the volume of data going through the module over the last 1, 10 and
30 seconds.

The Log tab will show the components log outputs (made in the code by calling the logPrint() method on
the api object) filtered for just that one component and the Data tab will show the private data saved by
the object (by calling the api method setPrivateData()).

The very top line in PsyProbe contains a number of system level views:

- System Info: - System uptime: 11m 26s 41988%us ~--- - ---------- Logl- Component Cummunicatiunl- Node Cummunicatianl- Contexts |- Subscripﬁonsl- Dataflow |- Components

The Log entry shows the full log output for all components, but you can filter based on a free-text
search to show only what you need.

The Subscriptions tab shows the subscriptions for all components in the system.
The Dataflow tab shows this information in a graphical form, i.e. all the components and the data

flowing between them based on their subscriptions. For big systems this becomes very cluttered, so you
can use two filters to only see the messages or the components that you are interested in.

Custom views
There are four ways to view custom information within the PsyProbe framework:

1. Add a custom tab for individual components

4 ~
% Ao wpd ' Alle
= 1 | Ao vpdate |

‘System Info:- System uptime: 01m 345 665004us - Component Communication |- Node Communicmon;- Contens}‘ Subsaipdons}- A!Groups}~

- Nodes: - 1 Nodes, 0 SeleCted == === === === === === eeeseeeceeeeeeeeeseeeees Selected|- All Groups|- = -
Node 1: Maln Address: 192.168,21.1:10000, 1 Spaces, 4 Cataloge, 1 Modules Perfermancs) {nfol:' +

- Catalogs: - 4 Catalogs, 0 SeleCted = =======s==sessesseesessssenssmasersasassasesananeaamanennn Selected | - u@w”! = -
Catalog 11 WB1 Mag in: 330990000 oip, f90) . 34 active trigger(s) (O inactive Stored Messages) Pedormance) Activity) Subscriptives) +
Catalog 2: WB2 Msg ini 211705520 ot, 0/%9) - 2 active trigger(s) (0 inactive Stored Mestages) Performance) Activity) Subscriptices) +
Catalog 3: MyFiles - Msg in: 21075000 aue: 0890 - 1 active trigger(s) active Performance) Activity) Subscriptions) ¢
Catalog 4: MyData Msg ini 2177551 outy 0/%%) - 3 active trigger(s) active Padormance) Activity) Subscriptices)

- Modules: - 1 Modules, 0 selected - = ====~==~ssemeececererconceeranenseenserraesaceecassmnneennene, Selected | - AlGrou_psi =3 =
Module 3: Test Mg In: 111950 aipy 100590500 < 1 sctive trigger(s) sctive Mm ActMtv‘ Subcdtpﬁet'/l +

2. Viewing private data and retrieving from the module itself

Module 10: TalkBackDialog - Msg in: 27(578%5) out: 419910) . 3 active trigger(s) (0 nactive Hierarcy) °L) Parformance) Activity) Subscriptions) =
w window
Name Value
JSON {"Module name”:"TalieBackDlalog”, "Last trigger™:"09:14:35.182.547", “Latest sentence” title”:"Sentence”, “text Jcolor 1ightgreen”, “status
LastSentence
LastSentenceTime 18/07/2017 09:14:39.182.547
Module 11: StopSpeakingDetector Msg in: 3157%0) out: 2(5090) . 4 active trigger(s) (0 Inactive Data) Parformance) Activity) Subscriptions) +

47

CM LABS

Powering the Al Revolution™ PsyProbe Web Interface -- Creating custom tabs

api->setPrivateData("My Data", str.c_str(), str.length(), "text/html");

GET /api/getcomponentdata?compid=15&name=MyDataName&format=text

3. Use a RequestStore Catalog to centrally collect and present data from messages
GET /api/query?from=RequestStore&query=FrameCounter

4. Use a custom PsyProbe subsite

You can create your own custom HTML pages at any time - just put the file(s) into the HTML tree and
load them by name

http://localhost:10000/mycustompage.html

Creating custom tabs

This option allows the user to add custom tabs to the component entry on the main PsyProbe page. It
involves creating a new template html file (i.e.), putting this file somewhere within the HTML directory
structure and then telling Psyclone about it from within your crank via the PsyAPI:

api->addPsyProbeCustomView("Stored Messages", "elements/whiteboardmessages.html");
The content of the template html file needs to be as a minimum

<script>
var TemplateCompID = 0O;
var TemplateCompName = "";

function loadTemplate($target, compID) {
// called once when the template is loaded
var comp = componentMap[compID];
TemplateCompID = compID;
TemplateCompName = comp.name;
updateTemplate($target, compID);
.. your custom code

}

function updateTemplate($target, compID) {
// called regularly for every update cycle
.. your custom code

}

</script>

.. HTML, styles, more scripts, etc.

The custom code can then dynamically retrieve information from Psyclone retrieving either private data
from the module itself (see below) or querying a RequestStore Catalog (see below).

An example of the template for the whiteboard custom tab can be seen in the template file

elements/whiteboardmessages.html

48

CM LABS

Powering the Al Revolution™ PsyProbe Web Interface -- Working with private data

Working with private data
If any component saves private data in the crank using the PsyAPI

bool setPrivateData(const char* name, const char* data, uinté64 size, const char* mimetype = NULL)

API, this data will show up in the component’s Data section in the PsyProbe web interface if a mimetype
has been specified. The mimetypes are the standard browser types and could be textual

api->setPrivateData("JSON", json.c_str(), json.length(), "application/json");
api->setPrivateData("LastSentence", utterance.c_str(), utterance.length(), "text/plain");
api->setPrivateData("LastSentenceTime", time.c_str(), time.length(), "text/plain");

or binary

api->setPrivateData("Face_2", bmpData, size, "image/bmp");

This data can also be retrieved either from a custom tab template page (see above) or by any browser
page by the following HTTP GET request:

GET /api/getcomponentdata?compid=15&name=MyDataName&format=text

You just need to know the component ID of the module to query, the name of the private data entry
and the format that the crank stored the data in ('text', 'xml', 'json’, 'html!' or 'binary').

You can enter this URL manually in a browser and see the result directly or you can retrieve this
information via AJAX in any HTML page you create.

Use a RequestStore Catalog

The RequestStore Catalog can be used to collect messages from the whole system, keep the most
recent versions of them and allow anyone to request parts of or the whole message by easy to
remember names. This means no custom programming or data in the modules at all.

An example of a RequestStore Catalog entry in the PsySpec could be:

<catalog name="RequestStore" type="RequestStore">

<trigger name="VideoFrame" type="video.output.frame" />

<trigger name="SampleXML" type="video.output.frame" />

<trigger name="SampleText" type="video.output.frame" />

<trigger name="SampleHTML" type="video.output.frame" />-->

<setup>
<store name="VideoFrame" trigger="VideoFrame" key="VideoDataFrame" keytype="data"

datatype="raw" mimetype="image/bmp" maxkeep="1" maxfrequency="1"
/>

<store name="SampleJSON" trigger="VideoFrame" mimetype="json" maxkeep="1"
maxfrequency="1" />
<store name="SampleXML" trigger="VideoFrame" mimetype="xml" maxkeep="1"
maxfrequency="1" />
<store name="SampleText" trigger="VideoFrame" mimetype="text" key="content"
maxkeep="1" maxfrequency="1" />
<store name="SampleNum" trigger="VideoFrame" mimetype="text" key="VideoWidth"
maxkeep="1" maxfrequency="1" />
<store name="SampleSize" trigger="VideoFrame" mimetype="text" key="size"
maxkeep="1" maxfrequency="1" />
<store name="SampleType" trigger="VideoFrame" mimetype="text" key="type"
maxkeep="1" maxfrequency="1" />

49

CM LABS

Powering the Al Revolution™ PsyProbe Web Interface -- Use a RequestStore Catalog
<store name="SampleTime" trigger="VideoFrame" mimetype="text" key="time"
maxkeep="1" maxfrequency="1" />
<store name="SampleTimeText" trigger="VideoFrame" mimetype="text" key="timetext"
maxkeep="1" maxfrequency="1" />
<!l--<store name="SampleHTML" mimetype="html" key="html" maxkeep="1"
maxfrequency="1" />-->
</setup>
</catalog>

Here we see the catalog subscribing to messages like any other module, each with a trigger name as
usual.

The custom setup XML part then defines named entries ('VideoFrame', 'SampleJSON', etc.) which can be
queried by anyone like this:

GET /api/query?from=RequestStore&query=VideoFrame

The return content-type is specifically specified in the setup XML so the one calling the URL doesn't have
to know. Each store entry can have the following parameters:

Name The name used in the request Required

trigger Which trigger message to get the Required
information from

key The name of the user entry inside the If not specified the whole message is returned as
message - can be header fields such as | either JSON, XML, HTML or TEXT, depending on the
'time’, 'type' too. 'time' will return the | mimetype
number of microseconds since year O -
'timetext' will return a nicer textual
description of the date and time

keytype The type of key Not currently used
datatype The type of binary data, mainly used for | If set to 'raw' the code knows to expect raw pixels
bitmaps and need the message to contain width and height

information too - so construct a valid bitmap
format to return. In the future we may support
other types of data types.

mimetype The mime type used to help the Required, mime types are standard browser mime
browser display the data correctly types such as 'application/json', 'text/html’,
'text/xml', etc. Can also be short versions, 'json',
'xml', 'text', etc.

maxkeep How many messages (trigger history) to | Default is 1, later may support returning vectors of
keep keys from several historical messages

maxfrequency The maximum number of messagesto | If set to 1 it will only keep 1 message every second
keep per second and ignore new messages for that trigger until
another 1 second has passed

50

CM LABS

Powering the Al Revolution™ PsyProbe Web Interface -- Use a custom PsyProbe subsite
Use a custom PsyProbe subsite

Custom location aliases can be added to PsyProbe for application specific use:

<psyprobe>
<alias name="robot" location="/somedir/html" default="index.html" />

</psyprobe>

- alias subnodes adds custom dirs to PsyProbe, if present
which means that when a browser requests the url
http://computer:port/robot/anydir/anyfile
PsyProbe will return the file found in /somedir/html/anydir/anyfile.

This can be any path on the local computer.

51

CM LABS

Powering the Al Revolution™ Services and interfaces -- Use a custom PsyProbe subsite

Services and interfaces
Psyclone has a number of services built in which are automatically created at startup unless specifically

disabled.
PsyProbe is the main system web interface which by default listens to the main system network port
interface:
<l-- Default services on all Psyclone systems, don't need to be added -->
<service name="PsyProbe" root="../html" />
<service name="Console" />
and
<!-- Default interfaces on all Psyclone systems, don't need to be added -->

<interface name="PsyProbe" protocol="HTTP" service="PsyProbe" />
<interface name="Console" protocol="Telnet" service="Console" />

These two standard interfaces can be disabled completely:

<interface protocol="HTTP" service="none" />
<interface protocol="Telnet" service="none" />

Other services can be set up in addition to the default ones:

<!-- Simple Web Service that just posts its web input and replies
with what comes back as triggers -->

<service name="MyWebService">
<trigger type="Data.Web.Reply" from="wb" />
<post type="Data.Web" to="wb" />

</service>

<interface name="MyWebInterface" port="6789" protocol="HTTP" service="MyWebService" />

The same can be set up for a telnet service:

<service name="MyTelnetService">
<trigger type="Data.Telnet.Reply" from="wb" />
<post type="Data.Telnet" to="wb" />

</service>

<interface name="MyTelnet" port="6789" protocol="Telnet" service="MyTelnetService" />

and for a Messaging service (remote end needs CMSDK):

<l-- Use incoming types already in messages -->
<service name="MyMessageService">

<trigger type="Data.Message.Reply" from="wb" />
</service>

<!-- Overwrite types before posting -->

<service name="MyMessageService">
<trigger type="Data.Message.Reply" from="wb" />
<post type="Data.Message" to="wb" />

</service>

<interface name="MyMessage" port="6789" protocol="Message" service="MyMessageService" />

52

CM LABS
Powering the Al Revolution™ Services and interfaces -- Use a custom PsyProbe subsite e
Y
Like the main Psyclone network port a new interface can be set up to autodetect the incoming protocol.
This way multiple interfaces speaking different protocols can share the same port:

<!-- Additional autodetect interfaces -->

<interface name="MyWebInterface" node="Node®" port="1234" protocol="HTTP"
service="MyWebService" timeout="3000" default="yes" />

<interface name="MyTelnet" node="Node®" port="1234" protocol="Telnet"
service="MyTelnetService" timeout="3000" />

<interface name="MyMessage" node="Node@" port="1234" protocol="Message"
service="MyMessageService" timeout="3000" />

In this example, the port will receive the incoming connection and from the client response attempt to
detect which type of protocol to speak (HTTP/Telnet/Message). If after 3 seconds nothing has been
detected the interface will assume that HTTP is the protocol and that MyWebService is the service.

53

CM LABS

Powering the Al Revolution™ Distributed Psyclone systems using Nodes -- Nodes

Distributed Psyclone systems using Nodes

A single Psyclone system started up on a single computer with a PsySpec specified on the command line
will run one instance of Psyclone on the local computer. An instance will always start up a local Node
through which manages all communication and information in the system including subscriptions,
services and interfaces, local components and local process spaces.

Nodes

A Psyclone system can be easily distributed across more than one computer (and more than one
operating system such as Linux and Windows) by starting up Nodes on different computers and pointing
the PsySpec on the startup computer to these Nodes. To start up an idle Node on another computer just
run Psyclone on the command line without specifying a PsySpec and this instance will now listen on its
main port for the startup Node connection. The main port number can be changed by specifying
port=6789 as a command line parameter.

The PsySpec on the startup computer can now refer to and distribute components to these idle Nodes.
First the spec has to define each additional node by name:

<node name="Nodel" address="localhost" port="11000" />
<node name="Node2" address="otherhost" port="10000" />

The local node doesn’t need to be specified and is always referred to in the spec as ‘Main’.

To start up a component on the local (Main) Node the component simply adds the name:

<module name="Ping" node="Main">

To start up a component on another Node the component adds its name:

<module name="Pong" node="Nodel">

This works for all types of components:

<whiteboard name="WB1" node="Nodel" key="count" keytype="integer" />

<whiteboard name="WB2" node="Node2" key="count" keytype="integer">
<trigger name="Ball" type="ball.4" />

</whiteboard>

<catalog name="MyFiles" node="Nodel" type="FileCatalog" root="./">
<parameter name="ReadOnly" type="String" value="no" />

</catalog>

<catalog node="Main" name="MyData" type="DataCatalog" interval="2000" root="./mydata.dat" />
If no Node is specified the component will be created on the startup Node.

Library locations are normally specified globally for all Nodes, but can be specified individually per
Node:

<node name="Node3" address="192.168.20.20" port="10000">
<library name="otherlib" library="../path/mylib.d11" />
</node>

54

CM LABS

Powering the Al Revolution™ Process separation using Spaces -- Spaces

Process separation using Spaces

Normally when a Psyclone system starts up each Node in the system will automatically create one
internal Process Space named ‘Root’. This means that everything which happens on this Node will
happen within the same OS process in the same memory space (using threads).

Spaces

A Psyclone Node can optionally create more Process Spaces. Each Space will run as a separate process in
the local operating system and individual components can be asked to run inside any named Space
within a Node. This means that if the code of a component does something bad and the process crashes
this will not affect the main Psyclone Node which can then safely restart the crashed Space and recreate
all the components inside. If these components have saved their data using the Persistent/Private data
API this data will remain intact and accessible to the new instance of the component.

To create a new Space in a single computer Psyclone system just define the Space by name in the
PsySpec:

<space name="YTTMSpace" />

Components can now be asked to run in this Space instead of the Root Space like this:

<module name="YTTM" space="YTTMSpace">

If running a distributed (multi-Node) Psyclone system a Space defined like this will be created in all
Psyclone Nodes unless you specify which Node the space should be created in:

<space node="Nodel" name="YTTMSpace" />

<module node="Nodel" name="YTTM" space="YTTMSpace">

Any Catalog, Whiteboard or Module can be placed in a process separately from the Node process

<catalog space="MySpace" name="MyData" type="DataCatalog" interval="2000" ... />

External spaces
Spaces can also be used for allowing third-party software to connect to a running Psyclone system. For
this purpose external Spaces can be defined in the PsySpec:

<space name="GUISpace" type="external" />

and external components can be defined as using this space and a Crank with just a name and no
function:

<module name="CoCoMapsGUI" space="GUISpace">
<crank name="CoCoMapsGUI" />

55

CM LABS

Powering the Al Revolution™ Process separation using Spaces -- External spaces +
Y
In this case neither the Space nor the module will be automatically created, are but rather placeholders
for when the external process creates the Space and registers the module crank.

The external program would be compiled to link with the CMSDK library, include the PsyAPI.h header
file and then do the following:

Create and connect the Space using the same name as specified in the PsySpec file:

PsyAPI* api = NULL;

PsySpace* space = new PsySpace("GUISpace");

if (!space->connect(sysid)) {
// Local Psyclone not ready yet, delete space and wait and try again later...
// utils::Sleep(1000);

}
else {
if (!space->start()) {
// An error occurred, delete space and wait and try again later...
}
else {
if (!(api = space->getCrankAPI(crankName.c_str()))) {
// Crank not found, report error, delete space and fail
}
}
}

From now on the newly returned PsyAPI object (api) can be used exactly like for internal modules:

while (api->shouldContinue()) {
if (inMsg = api->waitForNewMessage(100, triggerName)) {
api->logPrint(1, "Received trigger message: %s", triggerName);

If multiple crank functions are defined the getCrankAPI() function can be used multiple times to return
multiple PsyAPI objects, one for each function.

The external program can keep an eye on the Psyclone system it is connected to using

bool space->isConnected();

bool space->hasShutdown();
and if the local Psyclone Node shuts down or fails these will return false. The external program should
then delete the space, but NOT the PsyAPI object as this is owned by the PsySpace object and will be
destroyed as part of it:

delete(space);
space = NULL;
api = NULL;

The external process can then periodically retry the connection by creating the Space and trying to
connect.

Like internal Spaces, if an external space is shutdown or the program crashes the user can just restart it
and Psyclone will continue to run happily.

56

CM LABS

Powering the Al Revolution™ - communication between separate Psyclone systems -- Remote requests
Communication between separate Psyclone systems

We have seen how components running anywhere in a single Psyclone system seamlessly can
communicate with each other, regardless of whether they are in the same process, in separate process
Spaces on the same computer or running inside Spaces in Nodes running on different computers in a
distributed system.

In some cases, however, multiple independent Psyclone systems need to be able to communicate
directly with each other. An example could be two or more robots, each running their own distributed
Psyclone system across a couple of computers, needing to share data, either with each other directly or
via a separate independent Psyclone system.

Remote requests

Two Psyclone systems can do this via remote queries. A component in one Psyclone system can register
a query in their PsySpec configuration like normal, but instead of specifying a source component in its
own Psyclone system:

<query name="Master" source="CCMMaster" />

it can specify a named component in a remote Psyclone system:

<query name="Master" source="CCMMaster" host="other.hostname" port="10010" />

The component in the remote Psyclone system will receive the query like normal and reply to the query
like normal and the reply will be routed back to the original Psyclone system as if the query had been
answered locally. There is no reason why any side of the communication should need to know that this
qguery came from a different Psyclone system.

Recognising a remote query
The only way that the remote component can see that this query originated from another Psyclone
system is by the fact that the query message contains a few additional entries such as:

const char* iden = inMsg->getString("INTERSYSTEM_IDENTIFICATION");
uint32 ipHost = (uint32)msg->getInt("INTERSYSTEM_ADDRESS");

uintl6 ipPort = (uintl6)msg->getInt("INTERSYSTEM_PORT");

const char* src = inMsg->getString("INTERSYSTEM_SOURCENAME");

57

CM LABS

Powering the Al Revolution™ The CMSDK library -- APl documentation

The CMSDK library

The CMSDK core library is a C++ base library which contains much of the low-level functionality required
by Psyclone. It is released under a BSD open source licence and is free for anyone to use for any
purpose, except for those limited by the CADIA clause (see below).

It often abstracts the platform and operating system and provides an identical set of objects and utility
functions for a very large number of functional areas such as threading and synchronisation, process
handling, networking, shared memory handling, working with DLLs, timers, wait queues, binary message
containers, HTML request handling incl. a fully functional HTTP server, maths and stats classes, 64-bit
integer time functions with microsecond resolution, a request client/server/gateway system, a system-
wide verbose and logging system and a very large library of utility functions for working with text and
files.

Specifically, it provides the fundamental objects required for working with Psyclone and creating
components to be loaded into Psyclone via DLLs or shared objects. The main two are PsyAPI and
PsySpace, however, these underneath provide the foundation for the whole Psyclone system and multi-
process/multi-computer/multi-platform infrastructure.

AP| documentation

The full CMSDK library is documented via Doxygen and the methods most commonly used objects by
Psyclone users (PsyAPI, DataMessage, etc.) are documented in more detail.

To see the latest version of the documentation please browse to:

https://cmsdk.cmlabs.com

Compiling the CMSDK library
CMSDK is the core library providing OS dependent functionality and lots and lots of the base code.

The Python2 and Python3 projects are used to port important parts of CMSDK to Python 2.x and 3.x
using SWIG. These libraries can then be used for accessing CMSDK functionality from within a Python
program

You need to have Python 2.7 and/or 3.5 installed for either or both 32-bit and 64-bit versions to compile
these.

Using Visual Studio 2015 (Windows)

In the Open Source distribution of CMSDK find the Visual Studio solutions file in the top directory called
CMSDK.vs2015.sIn. Open this in Visual Studio 2015 and compile the whole project either in Debug or
Release mode. To build the SSL version of CMSDK select either Release SSL or Debug SSL. For this to
work the following path must exist and contain the OpenSSL include files:

..\.._libs\OpenSSL\openssl-1.0.2g-vs2015\include for 32 bit
..\.._libs\OpenSSL\openssl-1.0.2g-vs2015\include64 for 64 bit

and the library files

..\.._libs\OpenSSL\openssl-1.0.2g-vs2015\1ib for 32 bit
..\.._libs\OpenSSL\openssl-1.0.2g-vs2015\1ib64 for 64 bit

58

https://cmsdk.cmlabs.com/

CM LABS

Powering the Al Revolution™ The CMSDK library -- Linking with the CMSDK library
To use the CMSDK library from a Python program you will need to build either the CMSDKPY2 and/or h
the CMSDKPY3 DLLs. You do this by selecting them in the Solution Explorer, right click and select Build
or Rebuild. For this to work you will need Python 2 and/or 3 installed in either 32 and/or 64-bit versions
in the following directories:

C:\Python27 64-bit version of Python 2.7
C:\Python27-32 32-bit version of Python 2.7
C:\Python35 64-bit version of Python 3.5
C:\Python35-32 31-bit version of Python 3.5

Other versions and locations can be used by editing the Visual Studio CMSDKPY2 and CMSDKPY3 project
files.

Using Make (Linux)
In the Open Source distribution of CMSDK find the main Makefile in the top directory called Makefile.
On the command from this directory line issue the command

make to build everything for release
make debug to build everything for debug

To build the SSL version of Psyclone run either

make ssl to build everything for release including SSL support
make ssldebug to build everything for debug including SSL support

For this to work the SSL development libraries must be installed on the computer (used via Issl and
Icrypto).

To use modules written in the Python language you will need to build either the Python2Link and/or the
Python3Link DLLs. You do this by running

make python2 to build all files needed for Python 2 integration in release
make python2 debug to build all files needed for Python 2 integration in debug
make python3 to build all files needed for Python 3 integration in release

make python3 debug to build all files needed for Python 3 integration in debug

For this to work you will need Python 2 and/or 3 packages installed in the following directories:

PYTHON2INCLUDE=-I/usr/include/python2.7
PYTHON3INCLUDE=-I/usr/include/python3.4m
PYTHON2LIB=-1python2.7
PYTHON3LIB=-1python3.4m

Other versions and locations can be used by editing the Makefile.sys file entries for these.

Linking with the CMSDK library

To link a third-party source project with the CMSDK library one needs to add the CMSDK binary library
files to your project and include the appropriate header files needed. Depending on which additional
libraries you may need (such as SSL) you may need to link to these as well.

Using Visual Studio 2015 (Windows)
The easiest way to set up a project to use CMSDK is to look at the Psyclone project as it does this
already.

The project needs to link with the appropriate binary CMSDK library file. They are called
CMSDK(Debug)<vsversion>.lib, such as CMSDKDebug2015.lib and are located in CMSDK/lib/<platform>
such as CMSDK/lib/Win32. The SSL builds files have SSL in their names such as CMSDKSSLDebug2015.lib.

59

CM LABS

Powering the Al Revolution™ The CMSDK library -- Using the CMSDK library
The include header files are located in CMSDK/include.

Lastly, the project needs to be compiled with the code generation flag / runtime library Multi-threaded
DLL.

Using Make (Linux)
The easiest way to set up a project to use CMSDK is to look at the Psyclone project as it does this
already.

The project needs to link with the appropriate binary CMSDK library file. They are called
CMSDK(Debug).a, such as CMSDKDebug.a and are located in CMSDK/lib/<platform> such as
CMSDK/lib/32. The SSL builds files have SSL in their names such as CMSDKSSLDebug.a.

The include header files are located in CMSDK/include.

Using the CMSDK library

When the CMSDK library has been linked and the header files location have been set up any program
can start including header files and using CMSDK objects and functions. They all live in the namespace
called cmsdk which can either be used directly such as

cmlabs: :PsyAPI* api = new cmlabs::PsyAPI();
or the namespace can be specified earlier:

using namespace cmlabs;
PsyAPI* api = new PsyAPI();

A lot of the utility functions are in a separate namespace called cmlabs::utils, such as
cmlabs::utils::StringFormat("(%.3f,%.3f)", x, y);
or

using namespace cmlabs;
utils::StringFormat("(%.3f,%.3f)", X, y);

60

Powering the Al Revolution™ The CMSDK library -- CMSDK Licensing
CMSDK Licensing
CMSDK is released as open source under an EXTENDED BSD License.

Redistribution and use in source and binary forms, with or without modification, is permitted provided
that the following conditions are met:

- Redistributions of source code must retain the above copyright and collaboration notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

- Neither the name of its copyright holders nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

- CADIA Clause: The license granted in and to the software under this agreement is a limited-use
license. The software may not be used in furtherance of: (i) intentionally causing bodily injury or
severe emotional harm to any person; (ii) invading the personal privacy or violating the human
rights of any person; or (iii) committing or preparing for any act of war.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

61

CM LABS

Powering the Al Revolution™ Use Cases -- Integration of third-party applications
Use Cases

The following sections provide some representative examples of the types of projects which the
Psyclone platform has been in and how it uniquely benefitted the project in terms of speed of
integration and by offering a production-ready, well tested commercial platform.

Integration of third-party applications

When two or more otherwise incompatible software applications need to communicate with each other
developers face the prospect of either implementing their own networking protocol or integrating an
already existing product. Linking with third-party libraries are not always easy and configuring these to
allow any number of data types to be transferred either using publish/subscribe mechanisms or
asynchronous queries can take a long time.

Using the Psyclone platform and the CMSDK it is easy for third-party software projects to act as external
components, communicating with each other via a distributed Psyclone platform. This platform can
either just ask as a publish/subscribe conduit to allow the components to communicate directly with
minimal latency or it could use a combination of pub/sub messaging, signalling and asynchronous
queries to allow a richer and more multi-modal communication framework.

In addition, the Psyclone platforms offers realtime communication data monitoring via the PsyProbe
web interface where the developers can keep track of the dataflow and content. And they can even add
standard Psyclone modules and Psyclone contexts to allow the dataflow and the processing to be
dynamically updated in realtime depending on the situation and data driven context.

The DataMessage object offers the ability to attach and send any amount of data along including large
binary chunks and even a hierarchy of other DataMessages. Everything is timestamped and
synchronised to the nearest microsecond even across multiple computers.

Because Psyclone modules can be written in either C++ or Python it allows developers to mix these
languages in a single system. More languages are being added such as Java.

Finally, the Psyclone platform allows applications running on a mix of operating systems and bitness
architectures to communicate without the usual hurdles which normally comes with multi-platform
interactions.

Grid data processing
Processing of data on a scalable grid architecture can be done as long as the application and algorithms
fit with any one of the many architectures around such as Hadoop.

A single Psyclone system can be distributed onto any number of computers running a mixture of
operating systems. It allows scaling by adding and removing nodes at runtime and manual and
automatic load balancing by dynamically moving components to less busy computers.

It provides the PsyProbe web interface for remote non-interfering monitoring of data and custom
component visualisation.

The algorithms can be written in any of the supported programming languages — currently C++ and
Python 2 and 3 —and more languages are being added such as Java.

And the Psyclone contexts provide the ability to automatically and instantly update part of or the whole
dataflow based on data, external dependencies and resource availability, and even allow modules to
switch their processing algorithms entirely when in different contexts.

62

CM LABS

Powering the Al Revolution™ Use Cases -- Agent-based simulation

Agent-based simulation

Agent-based simulation traditionally deal with simulating the behaviour or responses of a very large
number of actors in a time synchronised system. Each actor or agent have their own internal state, but
are usually spawned from identical or groups of identical seed objects.

Psyclone was designed to support large distributed simulations with both simple and complex agents.
Specifically, Psyclone supports:

e Variable time step size — Global time signalling — also called conductor’s stick — allowing all
agents to complete their processing before progressing to the next time step

e Spawning of tens or hundreds of modules with identical cranks, but with variable or random
initial variable values (via parameters)

o Complex agents comprising a group of modules as a single entity, allowing the developer to
create richer agents which makes use of Psyclone’s modular architecture and even using
multiple programming languages

e Gradual development and integration with initial skeleton modules which over time gets
implemented to provide richer and more complex functionality

¢ Non-interfering monitoring via the PsyProbe web interface with a view of the whole system and
zooming into parts and even individual modules and dataflow

e Easy scalable platform to include any number of computers running any mix of supported OSes
and bitness

e Mix agents programmed in different programming languages (C++ and Python for now, Java and
others coming)

Interactive robots
Creating interactive robots involves a mix of a large number of areas of research such as vision, speech,
robotics, navigation as well as working within a limited amount of resources.

The CoCoMaps project, partially funded by the EU via the Echord++ project, used one independent
Psyclone system per robot, distributed partly onboard the robot and partly on a larger server across a
WiFi network. Each robot used the underlying ROS platform for low-level interaction with the robot and
above that had a large number of modules and catalogs for state-of-the-art vision including face
recognition, gaze and emotional response analysis, speech recognition and generation, role and task
planning and execution, dialogue steering and management, virtual control panel interaction and joint
search pattern navigation.

The cornerstone of the project was the Collaborative Cognitive Maps architecture, implemented by
allowing the robots to communicate with each other in real time via a shared CCMCatalog object.
Through this catalog each robot could publish, discuss and negotiate observations, roles and tasks with
the other robots and the system specifically allows the robots to completely disagree or reach a
partially-settled negotiated state.

To read more about the CoCoMaps project please visit: http://cmlabs.com/cocomaps

63

http://cmlabs.com/cocomaps

CM LABS

Powering the Al Revolution™

Tutorials -- Creating your first Psyclone system

Tutorials

Creating your first Psyclone system
A simple pingpong PsySpec could look like this:

<psySpec>
<module name="Ping">
<trigger name="Ready" type="Psyclone.Ready" />
<trigger name="Ball" type="ball.1" />
<crank name="Ping" function="Ping" />
<post name="Ball" type="ball.2" />
</module>
<module name="Pong">
<trigger name="Ball" type="ball.2" />
<crank name="Pong" function="Ping" />
<post name="Ball" type="ball.1" />
<post name="Done" type="Psyclone.Shutdown" />
</module>
</psySpec>

This spec creates two simple modules, one called Ping and the other called Pong. They are both created
the built-in crank function called Ping which means that no user code is required to run this system.

The dataflow between the modules goes as follows:

1) On system startup the Psyclone system itself posts the Psyclone.Ready message

2) Immediately the Ping module is triggered with this message as input

3) Once this message has been processed Ping posts an output message with type ball.2
4) Immediately the Pong module is triggered with the ball.2 message as input

5) Once this message has been processed Pong posts an output message with type ball.1
6) Immediately the Ping module is triggered with the ball.1 message as input

7) Once this message has been processed Ping posts an output message with type ball.2

And this back-and-forth flow continues until 100,000 messages have been received after which the Pong
module posts a message with type Psyclone.Shutdown and the system shuts down. Every 10,000
messages the current throughput performance it logged to the console in lines like:

[1] 28/06/2018 ©8:44:11.323.934 [Ping] Got msg 40000, avg msg time: 89.4us, avg msg age: 89.0us (1l.lus faster)...

To run this in Psyclone use the following command line:

Psyclone spec=pingpong.xml

64

CM LABS

Powering the Al Revolution™ Tutorials -- Creating your first Psyclone system
The system would run for a while and then exit, producing the following console output:

28/06/2018 08:44:03.947.650 Psyclone Node starting on port 10000...

[0] 28/06/2018 ©8:44:04.047.825 Parsing configuration and setting up system...

[0] 28/06/2018 ©8:44:04.051.347 *** Single Node ready, continuing system setup ***

[1] 28/06/2018 ©8:44:04.051.455 Success synchronising ID Manager...

[1] 28/06/2018 0©8:44:04.051.502 Configuring local node...

[1] 28/06/2018 08:44:04.053.195 Creating Module 'Ping'...

[1] 28/06/2018 0©8:44:04.053.286 SetupQ need more memory size: 5378344 use: 5377048 need: 2352

[1] 28/06/2018 08:44:04.058.505 PsySpace 'Root' (1) starting up...

[1] 28/06/2018 0©8:44:04.161.087 Configured Module 'Ping' (1) successfully

[1] 28/06/2018 ©8:44:04.161.204 Creating Module 'Pong'...

[1] 28/06/2018 08:44:04.162.020 Configured Module 'Pong' (2) successfully

[1] 28/06/2018 08:44:04.162.130 Sending config to all other nodes...

[1] 28/06/2018 08:44:04.162.232 **¥¥¥kikik QYSTEM READY *¥*kiok okt

[1] 28/06/2018 08:44:04.162.274 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k ok ok ok 3k 3k %k %k %k k ok ok

[1] 28/06/2018 ©8:44:04.163.309 Space 'Root' connected

[1] 28/06/2018 0©8:44:04.163.233 [Ping] Started running (internal)...

[1] 28/06/2018 08:44:04.163.288 [Ping] Starting 10 cycles test...

[1] 28/06/2018 0©8:44:04.163.577 [Pong] Started running (internal)...

[1] 28/06/2018 0©8:44:05.937.545 [Ping] Got msg 10000, avg msg time: 88.7us, avg msg age: 88.4us...

[1] 28/06/2018 08:44:07.724.488 [Ping] Got msg 20000, avg msg time: 89.3us, avg msg age: 88.7us (@.7us slower)...
[1] 28/06/2018 ©8:44:09.535.502 [Ping] Got msg 30000, avg msg time: 90.5us, avg msg age: 90.4us (1.2us slower)...
[1] 28/06/2018 ©8:44:11.323.934 [Ping] Got msg 40000, avg msg time: 89.4us, avg msg age: 89.0us (1.lus faster)...
[1] 28/06/2018 ©8:44:13.051.856 [Ping] Got msg 50000, avg msg time: 86.4us, avg msg age: 86.1us (3.0us faster)...
[1] 28/06/2018 ©8:44:14.799.030 [Ping] Got msg 60000, avg msg time: 87.4us, avg msg age: 87.2us (1.0us slower)...
[1] 28/06/2018 0©8:44:16.566.469 [Ping] Got msg 70000, avg msg time: 88.4us, avg msg age: 88.1lus (1.0us slower)...
[1] 28/06/2018 ©8:44:18.309.929 [Ping] Got msg 80000, avg msg time: 87.2us, avg msg age: 86.9us (1.2us faster)...
[1] 28/06/2018 ©8:44:20.100.120 [Ping] Got msg 90000, avg msg time: 89.5us, avg msg age: 89.2us (2.3us slower)...
[1] 28/06/2018 ©8:44:21.848.279 [Pong] Got msg 100000, avg msg time: 87.4us, avg msg age: 88.0us (2.1lus faster)...
[1] 28/@6/2@18 08:44:21.848.336 3k 3k 3k 3k ok 3k ok 3k ok ok ok ok ok 3k 3k 3k 3k 3k 3k sk ok ok ok ok ok ok ok ok 5k %k 5k k kK k ok k

[1] 28/06/2018 ©8:44:21.848.526 *¥*¥xkkikkx QYSTEM SHUTDOWN **¥ ok ks

[1] 28/06/2018 0©8:44:21.848.620 Module Pong requested system shutdown, shutting down...

[1] 28/06/2018 0©8:44:21.898.589 Local Node is preparing to shutdown...

[1] 28/06/2018 ©8:44:21.899.068 PsySpace 'Root' (1) shutting down...

[1] 28/06/2018 ©8:44:22.001.197 PsySpace 'Root' has shut down (1, ©00000000057DBBO)

28/06/2018 ©8:44:22.959.571 Node Networking is shutting down...

28/06/2018 08:44:23.379.153 Psyclone Node on port 10000 has shutdown successfully...

The first part of the output up until SYSTEM READY shows the system starting up and configuring itself
according to the PsySpec. After this the Psyclone.Ready message is posted and the system starts
running, outputting the stats after each batch of 10,000 messages. Then the system receives the
message to shut down and it goes through the process of doing just that.

65

CM LABS

Powering the Al Revolution™ Tutorials -- Adding your own modules
Adding your own modules
Each component in the PsySpec will have at least one crank function to run. Module can specify one or
more crank functions as part of their subscription, Whiteboards use a built-in crank function and
Catalogs specify their crank function as the Type of the Catalog.

A crank function is the function name in the code library (a DLL or SO) which will be called when a
trigger message arrives. Psyclone contains a number of built-in cranks such as the Ping crank above and
these do not need to specify the library. For all other components a library needs to be created using
the CMSDK, compiled and specified to inform Psyclone about which file on disk contains the compiled
code for the crank.

Libraries containing crank functions are specified using one or more library entries in the spec:

<library name="MyExamples" library="Examples" />

The library name is how subsequent cranks refer to the library and the library entry tells Psyclone which
actual file to load. On Windows Psyclone would look for the file Examples.dll in the current directory
and on UNIX Psyclone would look for the file libExamples.so. (In addition, when running a debug build of
Psyclone it will first look for the debug version of the library by appending Debug to the filename such

as ExamplesDebug.dll or libExamplesDebug.so).

Once the library has been defined cranks can refer to the library names:

<crank name="Ping" function="MyExamples::Ping" />

A custom library can be created using just the CMSDK Open Source library, i.e. Psyclone does not need
to be installed on the computer to compile a library, nor does it need the Open Source version of
Psyclone to compile or run.

A crank function is normally defined in a C++ header file:

#include "PsyAPI.h"
namespace cmlabs {
extern "C" {
D11Export int8 MyCrankFunction(PsyAPI* api);
. more crank function definitions ...

}

} // namespace cmlabs

and implemented in a C++ source file:

#include "MyCranks.h"
namespace cmlabs {

int8 MyCrankFunction(PsyAPI* api) {

DataMessage* inMsg, *outMsg;

const char* triggerName;

if (api->shouldContinue()) {

if (inMsg = api->waitForNewMessage(100, triggerName)) {
api->logPrint(1, "Received trigger message: %s", triggerName);
outMsg = new DataMessage();
. add custom data entries to outMsg ...

outMsg->setInt("mycount”, 3);
outMsg->setString("mytext", "my data");

66

CM LABS

Powering the Al Revolution™ Tutorials -- Adding your own modules
api->postOutputMessage("MyPost”, outMsg);

}
¥

return 0;

}

} // namespace cmlabs
(For Python-based modules please refer to the Python sections.)

A crank function takes one input parameter which is a pointer to a PsyAPI object. This object can be
used by the function to communicate with the Psyclone system including waiting for new messages and
posting output messages, but also for reading and changing parameters, retrieving or querying
messages from other components, etc.

The definitions of crank functions need to have the D11Export classifier which makes them visible to
Psyclone when loading the DLL/SO.

67

CM LABS

Powering the Al Revolution™ Tutorials -- Creating Python modules
Creating Python modules
In addition to modules written in C++ Psyclone also supports running modules written in the language of
Python, both version 2.x and 3.x. This is done by allowing the crank function to be written in and loaded
from Python.

Crank functions for C++ modules use the PsyAPI object from the CMSDK library to communicate with
Psyclone and this in turn makes use of a large proportion of the other objects and functions in the
CMSDK library. Full support for the CMSDK library has been added to Python by adding a SWIG interface
— which means that any Python code can use the PsyAPl and other objects and functions just like a C++
module would.

Where a C++ module’s crank function is specified in the PsySpec like this:

<module name="Ping">
<trigger name="Ready" type="Psyclone.Ready" />
<trigger name="Ball" type="ball.1" />
<crank name="Ping" function="Ping" />
<post name="Ball" type="ball.2" />
</module>

a Python module is almost the same except for the crank entry now referring to a Python code file:

<module name="Ping">
<trigger name="Ready" type="Psyclone.Ready" />
<trigger name="Ball" type="ball.1" />
<crank name="Ping" language="python2" script="path/to/ping.py" />
<post name="Ball" type="ball.2" />
</module>

The language can be either python2 or python3.

Inline Python modules
For simple Python modules it is even possible to write the crank code directly in the PsySpec file:

<crank name="p1l" language="python2">
<! [CDATA[
name = api.getModuleName()
print("Module name: %s" % name)
key = api.getParameterInt("Key")
while (api.shouldContinue()):
msg = api.waitForNewMessage(20)
if msg != None:
mykey = msg.getInt("MyKey")
if mykey == @:
mykey = key
triggerName = api.getCurrentTriggerName()
api.logPrint(1, "Got Key: " + str(mykey))
outMsg = cmsdk.DataMessage()
outMsg.setInt("MyKey", mykey + 1)
api.postOutputMessage("Output", outMsg)
11>

</crank>

The inline Python code will automatically load all the libraries needed and create the PsyAPI object
called api.

68

CMLABS

Powering the Al Revolution™

Tutorials -- Python code file modules v,

Y
Please note: Because Python is very sensitive about indentation, please take care that the inline Python
code keeps these intact. Psyclone will when loading the module attempt to adjust the indentation.

Python code file modules
The equivalent simple Python module written in external files looks like this:

def PsyCrank(apilink):
api = cmsdk.PsyAPI.fromPython(apilink);
name = api.getModuleName();
print("Module name: %s" % name)
key = api.getParameterInt("Key");
while (api.shouldContinue()):
msg = api.waitForNewMessage(290)
if msg != None:
mykey = msg.getInt("MyKey")
if mykey == 0:
mykey = key
triggerName = api.getCurrentTriggerName()
api.logPrint(1, "Got Key: " + str(mykey))
outMsg = cmsdk.DataMessage()
outMsg.setInt("MyKey", mykey + 1)
api.postOutputMessage("Output"”, outMsg)

The first two lines are needed in this case (they are added automatically for inline modules) and there is
no need to Import the CMSDK library as Psyclone will do this automatically.

Python import libraries and paths
When Psyclone runs any Python, both inline and in a code file, module it needs to have access to

4) The correct version of Python installed correctly
a. Correct major version, either 2.x or 3.x
b. Correct bitness, either 32 or 64-bit
c. The python DLLs in the search path
5) The CMSDK binary library and its Python interface file
6) Any libraries which the Python module may import in addition

The CMSDK binary library is a file called _cmsdk.pyd on Windows and _cmsdk.so on Linux. This file is
accompanied by the Python interface file called cmsdk2.py for Python2 and cmsdk3.py for Python3. In

addition, for Debug builds of Psyclone debug versions of these file will be used (_cmsdkdebug.pyd/so
and cmsdk2/3debug.py).

These files will either need to be
d) inthe same directory as the Python program as specified in the crank:

<crank name="Ping" language="python2" script="path/to/ping.py" />

e) inthe same directory as the Psyclone binary used to run the system

f) and if not, an additional parameter can be specified on the module to tell Psyclone where to
find these:

<parameter name="libpath" type="String" value="../CMSDK/bin/Win32" />
<crank name="Ping" language="python2" script="path/to/ping.py" />

69

CM LABS

Powering the Al Revolution™ Tutorials -- Creating external modules
Creating external modules

External modules use Spaces to allow third-party software to connect to a running Psyclone system. For
this purpose external Spaces can be defined in the PsySpec:

<space name="GUISpace" type="external" />

and external components can be defined as using this space and a Crank with just a name and no
function:

<module name="CoCoMapsGUI" space="GUISpace">
<crank name="CoCoMapsGUI" />

In this case neither the Space nor the module will be automatically created, are but rather placeholders
for when the external process creates the Space and registers the module crank.

The external program would be compiled to link with the CMSDK library, include the PsyAPIl.h header
file and then do the following:

Create and connect the Space using the same name as specified in the PsySpec file:

PsyAPI* api = NULL;

PsySpace* space = new PsySpace("GUISpace");

if (!space->connect(sysid)) {
// Local Psyclone not ready yet, delete space and wait and try again later...
// utils::Sleep(1000);

}
else {
if (!space->start()) {
// An error occurred, delete space and wait and try again later...
}
else {
if (!(api = space->getCrankAPI(crankName.c_str()))) {
// Crank not found, report error, delete space and fail
}
}
}

From now on the newly returned PsyAPI object (api) can be used exactly like for internal modules:

while (api->shouldContinue()) {
if (inMsg = api->waitForNewMessage(100, triggerName)) {
api->logPrint(1, "Received trigger message: %s", triggerName);

If multiple crank functions are defined the getCrankAPI() function can be used multiple times to return
multiple PsyAPI objects, one for each function.

The external program can keep an eye on the Psyclone system it is connected to using

bool space->isConnected();
bool space->hasShutdown();

and if the local Psyclone Node shuts down or fails these will return false. The external program should
then delete the space, but NOT the PsyAPI object as this is owned by the PsySpace object and will be
destroyed as part of it:

70

CM LABS

Powering the Al Revolution™

Tutorials -- Creating external modules

delete(space);
space = NULL;
api = NULL;

The external process can then periodically retry the connection by creating the Space and trying to
connect.

Like internal Spaces, if an external space is shutdown or the program crashes the user can just restart it
and Psyclone will continue to run happily.

71

CM LABS

Powering the Al Revolution™ Tutorials -- Creating your own catalogs
Creating your own catalogs
In addition to the built-in Catalogs users can create custom Catalogs which can be queried from any
other component using either a string-based or message-based interface.

This section first describes how another component can query a Catalog and after that how a custom
Catalog can be created to handle such queries.

The string-based query interface is:

uint8 queryCatalog(char** result, uint32 &resultsize, const char* name,
const char* query, const char* operation = NULL, const char* data = NULL,
uint32 datasize = 0, uint32 timeout = 5000);

and can be called like this:

status = api->queryCatalog(&result, datasize, "MyFiles", "test", "read");

The message-based interface allows more flexibility in that a custom DataMessage can be used to hold
the query (including any number of user entries and data types such as images, etc.) and the reply is
returned as an equally flexible DataMessage:

uint8 queryCatalog(DataMessage** resultMsg, const char* name,
DataMessage* msg, uint32 timeout = 5000);

This can be used like this:
status = api->queryCatalog(&resultMsg, "MyQueryName", queryMsg, 5000);
Status can be one of

#define QUERY_FAILED

#define QUERY_TIMEOUT

#define QUERY_NAME_UNKNOWN
#define QUERY_COMPONENT_UNKNOWN
#define QUERY_QUERYFAILED
#define QUERY_SUCCESS

#define QUERY_NOT_AVAILABLE
#define QUERY_NOT_REACHABLE

oNOUVThA WNPRE

Custom Catalogs can be created by writing a custom Catalog crank function. This crank function works
exactly like the module crank function and a Catalog can receive and process subscription trigger
messages and post output messages. In addition it can also receive synchronous query messages to
which is should reply.

while (api->shouldContinue()) {
if (inMsg = api->waitForNewMessage(100, triggerName)) {

if (triggerName && stricmp(triggerName, "SomeTrigger") == 0) {
. process normal trigger message ...

}

else if (inMsg->getType() == PsyAPI::CTRL_QUERY) {
. process query message ...
. and then reply to the query ...

72

CM LABS

Powering the Al Revolution™ Tutorials -- Creating your own catalogs N
Y
To reply to a query not requiring return data the query reference number is required and a status flag
providing information about whether the query succeeded or not.

api->queryReply((uint32)inMsg->getReference(), status);

The incoming query message for string based queries will contain the textual parameters inside and the

Catalog crank can read them like this:

if (str = inMsg->getString("Subdir"))
subdir = str;

if (str = inMsg->getString("Ext"))
regext = str;

if (str = inMsg->getString("Binary"))
regbinary = (stricmp(str, "yes") == 0);

if ((str = inMsg->getString("Operation")))
reqgwrite = (stricmp(str, "write") == 0);

and the reply needs to be done like this:

bool queryReply(uint32 id, uint8 status, char* data, uint32 size, uint32 count);
such as

api->queryReply((uint32)inMsg->getReference(), QUERY_SUCCESS, data, size, 9);

For message-based queries the incoming query message can contain any number of custom data entries
such as text, numbers, raw data and attached messages. Replies to these should be a Data Message too
which similarly can contain any number of data entries:

bool queryReply(uint32 id, uint8 status, DataMessage* msg = NULL);

such as

api->queryReply((uint32)inMsg->getReference(), status, replyMsg);

73

CM LABS

Powering the Al Revolution™ Tutorials -- Add custom data in PsyProbe
Add custom data in PsyProbe
If any component saves private data in the crank using the PsyAPI

bool setPrivateData(const char* name, const char* data, uint64 size, const char* mimetype = NULL)

API, this data will show up in the component’s Data section in the PsyProbe web interface if a mimetype
has been specified. The mimetypes are the standard browser types and could be textual

api->setPrivateData("JSON", json.c_str(), json.length(), "application/json");
api->setPrivateData("LastSentence", utterance.c_str(), utterance.length(), "text/plain");
api->setPrivateData("LastSentenceTime", time.c_str(), time.length(), "text/plain");

or binary

api->setPrivateData("Face_2", bmpData, size, "image/bmp");
This data can also be retrieved either from a custom tab template page (see above) or by any browser
page by the following HTTP GET request:

GET /api/getcomponentdata?compid=15&name=MyDataName&format=text

You just need to know the component ID of the module to query, the name of the private data entry
and the format that the crank stored the data in ('text’, 'xml', 'json’, 'html' or 'binary').

You can enter this URL manually in a browser and see the result directly or you can retrieve this
information via AJAX in any HTML page you create.

74

CM LABS

Powering the Al Revolution™

Tutorials -- Add a custom tab in PsyProbe

Add a custom tab in PsyProbe

PsyProbe allows the user to add custom tabs to the component entry on the main PsyProbe page. It
involves creating a new template html file, putting this file somewhere within the HTML directory
structure and then telling Psyclone about it from within your crank via the PsyAPI:

api->addPsyProbeCustomView("Stored Messages",
"elements/whiteboardmessages.html");

The content of the template html file needs to be as a minimum

<script>
var TemplateCompID = O;
var TemplateCompName = "";

function loadTemplate($target, compID) {
// called once when the template is loaded
var comp = componentMap[compID];
TemplateCompID = compID;
TemplateCompName = comp.name;
updateTemplate($target, compID);
.. your custom code

}

function updateTemplate($target, compID) {
// called regularly for every update cycle
.. your custom code

}

</script>

.. HTML, styles, more scripts, etc.

The custom code can then dynamically retrieve information from Psyclone retrieving either private data
from the module itself (see below) or querying a RequestStore Catalog (see below).

An example of the template for the whiteboard custom tab can be seen in the template file

elements/whiteboardmessages.html

75

CM LABS

Powering the Al Revolution™ Tutorials -- Example of a PsySpec for a large system
Example of a PsySpec for a large system
The following PsySpec is from the CoCoMaps project and consists of a complete independent robot
system. For more information about the CoCoMaps project please see http://cmlabs.com/cocomaps.

<psySpec>
Qoo SRR R KRR KKK KRR RO KK R K KK KR SR KK KR R KK KR SR K K SRR SR R K KR SR KKK KRR SRRk SR KRRk R R KRR R R R Rk _ Ly
<!-- System configuration -->
(!__ 3k 3k 3k 3k 3k 3k 3k 3k ok 3k %k %k %k %k ok %k >k >k >k >k >k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok ok 3k ok ok ok ok %k %k %k ok ok ok ok -=>

<include file="system2.inc" />

<library name="SpeechAnalyser" library="SpeechAnalyser" />
<library name="Nuance" library="Nuance" />

<library name="Perception" library="Perception" />

<library name="ROSInterface" library="ROSInterface" />

<library name="InteractionManager" library="InteractionManager" />

<module name="DefaultRoleDetector">
<trigger name="NowDefaultRole" type="Self.Role.Searcher" />
<post name="DialogOff" type="dialog.off"/>
<post name="AutoNavigationOn" type="navigation.auto.on" />
<post name="StopMicrophone" type="cmd.input.audio.off" />
</module>

<module name="PrimaryRoleDetector">
<trigger name="NowPrimaryRole" type="Self.Role.Communicator" />
<post name="DialogOn" type="dialog.on"/>
<post name="AutoNavigationOff" type="navigation.auto.off" />
<post name="StartMicrophone" type="cmd.input.audio.on" />
<post name="NavigateCancel" type="Robot.Navigate.Cancel” />
</module>

<module name="SecondaryRoleDetector">
<trigger name="NowSecondaryRole" type="Self.Role.Controller" />
<post name="DialogOff" type="dialog.off"/>
<post name="AutoNavigationOff" type="navigation.auto.off" />
<post name="StopMicrophone" type="cmd.input.audio.off" />
<post name="NavigateCancel" type="Robot.Navigate.Cancel" />

</module>

<!__ 3k 3k 3k 3k ok sk ok 3k ok ok ok ok ok ok 3k sk sk ok sk sk sk ok sk sk sk Sk 3k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k ok ok ok 3k k %k 3k >k 3k >k >k >k >k 3k 3k ok 3k ok -=>
<!-- PsyProbe configuration -->
<!__ 3k 3k 3k sk ok ok ok ok ok ok sk ok ok ok 3k sk sk sk sk sk sk ok sk sk sk sk 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k ok 3k ok 3k %k k 3k >k 3k >k >k >k >k 3k 3k ok -=>

<psyprobe location="%PsyDir%/html">
<!-- http://localhost:10000/robot/file.html -->
<alias name="robot" location="%HTMLDir%" default="index.html" />
<post name="CommandMoveForward" type="Robot.Command.Move.Forward" />
<post name="CommandMoveBackward" type="Robot.Command.Move.Backward" />
<post name="CommandTurnLeft" type="Robot.Command.Turn.Left" />
<post name="CommandTurnRight" type="Robot.Command.Turn.Right" />
<post name="CommandMoveForwardLeft" type="Robot.Command.Move.ForwardLeft" />
<post name="CommandMoveForwardRight" type="Robot.Command.Move.ForwardRight" />
<post name="CommandMoveBackwardLeft" type="Robot.Command.Move.BackwardLeft" />
<post name="CommandMoveBackwardRight" type="Robot.Command.Move.BackwardRight" />
<post name="CommandReturnToDock" type="Robot.Command.ReturnToDock" />
<post name="ReportRobotPosError" type="Report.Robot.PositionError" />
<post name="ReportHumanExit" type="Report.Human.Exit" />
<post name="ReportHumanPosError" type="Report.Human.PositionError" />
<post name="ReportHumanIDError" type="Report.Human.IDError" />
<post name="ReportHumanEntry" type="Report.Human.Entry" />
<post name="ReportHumanLeft" type="Report.Human.Left" />
</psyprobe>

<catalog name="MessageDataCatalog" type="MessageDataCatalog">
<trigger name="RobotStatus" type="Robot.Status" />
<trigger name="Blob" type="Robot.Vision.Blob" />
<trigger name="USB" type="Robot.Camera.USB" />
<trigger name="Color" type="Robot.Camera.Color" />
<trigger name="Depth" type="Robot.Camera.Depth" />
<trigger name="Registered" type="Robot.Camera.Registered" />
<trigger name="IR" type="Robot.Camera.IR" />
<trigger name="Map" type="Robot.Map" />
<setup>
<store name="USBImage" trigger="USB" key="Image" keytype="data"
datatype="raw" mimetype="image/bmp" maxkeep="1" maxfrequency="1" />
<store name="USBImageRaw" trigger="USB" key="Image" keytype="data"
mimetype="application/binary" maxkeep="1" maxfrequency="1" />
<store name="ColorImage" trigger="Color" key="Image" keytype="data"
datatype="raw" mimetype="image/bmp" maxkeep="1" maxfrequency="1" />
<store name="ColorImageRaw" trigger="Color" key="Image" keytype="data"
mimetype="application/binary" maxkeep="1" maxfrequency="1" />

76

http://cmlabs.com/cocomaps

CM LABS

Powering the Al Revolution Tutorials -- Example of a PsySpec for a large system
<store name="DepthImage" trigger="Depth" key="Image" keytype="data"
datatype="raw" mimetype="image/bmp" maxkeep="1" maxfrequency="1" />
<store name="DepthImageRaw" trigger="Depth" key="Image" keytype="data"
mimetype="application/binary" maxkeep="1" maxfrequency="1" />
<store name="RegisteredImage" trigger="Registered" key="Image" keytype="data"
datatype="raw" mimetype="image/bmp" maxkeep="1" maxfrequency="1" />
<store name="RegisteredImageRaw" trigger="Registered" key="Image" keytype="data"
mimetype="application/binary" maxkeep="1" maxfrequency="1" />
<store name="IRImage" trigger="IR" key="Image" keytype="data"
datatype="raw" mimetype="image/bmp" maxkeep="1" maxfrequency="1" />
<store name="IRImageRaw" trigger="IR" key="Image" keytype="data"
mimetype="application/binary" maxkeep="1" maxfrequency="1" />
<store name="Map" trigger="Map" key="Image" keytype="data"
datatype="raw" mimetype="image/bmp" maxkeep="1" maxfrequency="1" />
<store name="MapRaw" trigger="Map" key="Image" keytype="data"
mimetype="application/binary" maxkeep="1" maxfrequency="1" />
<store name="StatusJSON" trigger="RobotStatus" mimetype="json" maxkeep="1" maxfrequency="1" />
<store name="StatusText" trigger="RobotStatus" mimetype="text" maxkeep="1" maxfrequency="1" />
<store name="StatusXML" trigger="RobotStatus" mimetype="xml" maxkeep="1" maxfrequency="1" />

</setup>
</catalog>
Q1 m o Rk sk ok ok ok ok ok ok ok ok ok ok ok oK oK K K K K K K K K K oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK ok oK KoK SRR R SRR R R R SRR R SRR Rk kst skokskokokokskokskokokskosk ok sy
<!-- CCMCatalog configuration -=>
<!__ 3k 3k 3k ok ok ok ok ok ok ok ok ok 3k ok 3k Sk sk sk sk sk sk sk sk Sk Sk Sk ok ok ok 3k ok 3k 3k ok ok ok ok ok 3k ok 3k ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok k ok sk k sk k sk k sk k ok k ok k sk k k k kkk ok -=>

<catalog name="CCMMaster" type="CCMProxyCatalog">
<parameter name="SystemID" type="Integer" value="%SystemID%" />
<query name="Master" source="CCMMaster" host="%MasterAddress%" port="%MasterPort%" />
<trigger name="ObjectInfo" type="Object.Information" />
<post name="CommandMoveForward" type="Robot.Command.Move.Forward" />
<post name="CommandMoveBackward" type="Robot.Command.Move.Backward" />
<post name="CommandTurnLeft" type="Robot.Command.Turn.Left" />
<post name="CommandTurnRight" type="Robot.Command.Turn.Right" />
<post name="CommandMoveForwardLeft" type="Robot.Command.Move.ForwardLeft" />
<post name="CommandMoveForwardRight" type="Robot.Command.Move.ForwardRight" />
<post name="CommandMoveBackwardLeft" type="Robot.Command.Move.BackwardLeft" />
<post name="CommandMoveBackwardRight" type="Robot.Command.Move.BackwardRight" />
<post name="CommandStop" type="Robot.Command.Stop" />
<post name="CommandNavigateTo" type="Robot.Request.Navigate" />
<post name="CommandReturnToDock" type="Robot.Command.ReturnToDock" />
<post name="ReportRobotPosError" type="Report.Robot.PositionError" />
<post name="ReportHumanExit" type="Report.Human.Exit" />
<post name="ReportHumanPosError" type="Report.Human.PositionError" />
<post name="ReportHumanIDError" type="Report.Human.IDError" />
<post name="ReportHumanEntry" type="Report.Human.Entry" />
<post name="ReportHumanLeft" type="Report.Human.Left" />
<post name="RoleAssigned" type="Role.Assigned" />
<post name="RoleLeft" type="Role.Left" />
<post name="RoleGiven" type="Role.Given" />
<post name="TaskCreated" type="Task.Created" />
<post name="TaskAssigned" type="Task.Assigned" />
<post name="TaskAccepted" type="Task.Accepted" />
<post name="TaskUpdated" type="Task.Updated" />
<post name="TaskCompleted" type="Task.Completed" />
<post name="TaskTimeout" type="Task.Timeout" />
<post name="TaskCancelled" type="Task.Cancelled" />
</catalog>

<catalog name="PositionCollectorl" type="CCMCollector">
<query name="Master" source="CCMMaster" />
<trigger name="RobotStatus" type="Self.Position.Data" />
<trigger name="RobotDetection" type="Robot.Self.Detected" />
<trigger name="HumanDetection" type="Human.Self.Detected" />
<trigger name="IncomingSpeech" type="input.speech.detected" />
<trigger name="OutgoingSpeech" type="output.speech.detected" />
<setup>
<obs name="Location" obstype="Location" trigger="RobotStatus">
</obs>
<obs name="Location" obstype="Location" trigger="RobotDetection">
<mapping entry="x" key="PosX" />
<mapping entry="y" key="PosY" />
</obs>
<obs name="Location" obstype="Location" trigger="HumanDetection">
<mapping entry="x" key="PosX" />
<mapping entry="y" key="PosY" />
</obs>
<obs name="Utterance" obstype="String" trigger="IncomingSpeech">
<mapping entry="val" key="Utterance" />
</obs>
<obs name="Utterance" obstype="String" trigger="OutgoingSpeech">
<mapping entry="val" key="Utterance" />
</obs>

77

CM LABS

Powering the Al Revolution™ H
9 Tutorials -- Example of a PsySpec for a large system
</setup>
</catalog>
Q1 m o Rk sk sk ok ok ok ok ok ok ok ok ok ok oK oK K K K K SR K K K oK oK oK oK oK oK oK oK oK oK KoK oK oK oK oK oK oK oKk SRR R SRR R R RR SRR Rk kst skokokokokoRskokokokokoskoskok -y
<!-- Whiteboards -->
(!__ 3k 3k 3k 3k ok ok 3k ok ok sk ok ok sk ok k 3k >k 3k 3k sk sk >k k sk %k 3k ok 3k 5k ok 3k 5k >k 3k 5k >k 3k 5k >k 3k 5k >k 3k 5k >k 3k %k 3k sk >k 3k 5k >k 3k >k 3k 5k k 3k >k sk 3k >k >k 3k >k >k 3k 5k 3k 5k >k >k 5k >k >k 5k k %k k k -=>

<whiteboard name="MessagesOfInterest">
<trigger name="Dialog" type="dialog.*"/>
<trigger name="Navigation" type="navigation.*" />
<trigger name="Roles" type="Role.*" />
<trigger name="Tasks" type="Task.*" />
<trigger name="RobotNavigation" type="Robot.Status.Navigate.*" />
<trigger name="NavigationRequests" type="Robot.Request.*" />
<trigger name="InputFace" type="Input.Face.*" />
<trigger name="FaceRecog" type="Face.Detection.*" />
<trigger name="Human" type="Human.*" />
<trigger name="InputSpeech" type="input.speech.*" />
<trigger name="OutputSpeech" type="output.speech.*" />
<trigger name="AudioStarted" type="output.audio.started" />
<trigger name="AudioFinished" type="output.audio.ended" />
<trigger name="Panell" type="Panell.Command.*" />
<trigger name="Panel2" type="Panel2.Command.*" />

</whiteboard>

<!__ 3k 3k 3k 3k ok ok ok ok ok ok ok ok 3k ok 3k sk sk sk sk sk ok sk sk sk sk sk ok 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok ok ok 3k >k k 3k >k 3k >k ok ok >k >k 3k ok -=>
<!-- Demo data recording configuration -->
oo R KRR ok KK KKK R KK KK R K KK KR SR K K KK ok KK KoK SR K K Kok ok R K KK R KKK KR SRR SRRk R K KRR R R KRR R R Rk s

<catalog name="DemoRecording" type="ReplayCatalog" root="%RecordingDir%/Demo3SlaveRecording” maxsize="1000000000"> -->
<trigger name="ReportRobotPosError" type="Report.Robot.PositionError" />
<trigger name="ReportHumanExit" type="Report.Human.Exit" />
<trigger name="ReportHumanPosError" type="Report.Human.PositionError" />
<trigger name="ReportHumanIDError" type="Report.Human.IDError" />
<trigger name="ReportHumanEntry" type="Report.Human.Entry" />
<trigger name="ReportHumanLeft" type="Report.Human.Left" />
<trigger name="IdentityData" type="Self.Identity.Data" />
<trigger name="RobotStatus" type="Self.Position.Data" />
<trigger name="RobotDetection" type="Robot.Self.Detected" />

<trigger name="HumanAppearedSelf" type="Human.Self.Appeared" />-->
<trigger name="HumanAppearedOther" type="Human.Other.Appeared" />-->
<trigger name="HumanLeft" type="Human.Left" />

<trigger name="NavigationActive" type="Robot.Status.Navigate.Active" />
<trigger name="NavigationComplete" type="Robot.Status.Navigate.Complete" />
<trigger name="NavigationFailed" type="Robot.Status.Navigate.Failed" />
<trigger name="NavigationTimeout" type="Robot.Status.Navigate.Timeout" />
<trigger name="NavigationBusy" type="Robot.Status.Navigate.Busy" />
<trigger name="NavigateCommand" type="Robot.Command.Navigate" />

<trigger name="UnknownFace" type="Face.Detection.Unknown" />

<trigger name="BadMatchFace" type="Face.Detection.Bad" />

<trigger name="NoFace" type="Face.Detection.NoFace" />

<trigger name="Face" type="Face.Detection.Person" />

<trigger name="FaceTooBusy" type="Face.Detection.Server.Skip" />

<trigger name="FaceQueueSkip" type="Face.Detection.Queue.Skip" />
<trigger name="FaceProcFailed" type="Face.Detection.Failed" />

<trigger name="FaceProcTimeout" type="Face.Detection.Timeout" />

</catalog>

Q1 m o KRR R oK ok ok ok ok ok ok oK ok ok oK 3K 3K 3K K 3K SK K K K KKK KKK KKK KKK KKK KKK KKK KRR R RRRRRRR R R KRR SRSRSRSRSRSRSR Rk kok ok sy
<!-- Robot control -=>
<|__ 3k 3k 3k 3k 3k ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok 3k 3k 3k 3k 3k ok ok 3k 3k ok ok ok ok ok >k k 3k 3k 3k >k ok >k sk >k >k okok ok ok >

<module name="RobotStatus">
<parameter name="MapMessage" type="String" value="%DataDir%/map.msg" />
<parameter name="ColorMessage" type="String" value="%DataDir%/color.msg" />
<parameter name="DepthMessage" type="String" value="%DataDir%/registered.msg" />
<parameter name="simulatemoving" type="String" value="%SimulateSystem%" />
<parameter name="interval" type="Integer" value="5000" />
<parameter name="libpath" type="String" value="%PylibDir%" />
<parameter nitpose_x" type="Float" value="%initpose_x%" />
<parameter nitpose_y" type="Float" value="%initpose_y%" />
<parameter name="initpose_oz" type="Float" value="%initpose_oz%" />
<parameter name="initpose_ow" type="Float" value="%initpose_ow%" />

<trigger name="Ready" type="Psyclone.Ready" />

<trigger name="CommandMoveForward" type="Robot.Command.Move.Forward" />
<trigger name="CommandMoveBackward" type="Robot.Command.Move.Backward" />
<trigger name="CommandTurnLeft" type="Robot.Command.Turn.Left" />
<trigger name="CommandTurnRight" type="Robot.Command.Turn.Right" />

78

CM LABS

Powering the Al Revolution Tutorials -- Example of a PsySpec for a large system
<trigger name="CommandMoveForwardLeft" type="Robot.Command.Move.ForwardLeft" />
<trigger name="CommandMoveForwardRight" type="Robot.Command.Move.ForwardRight" />
<trigger name="CommandMoveBackwardLeft" type="Robot.Command.Move.BackwardLeft" />
<trigger name="CommandMoveBackwardRight" type="Robot.Command.Move.BackwardRight" />
<trigger name="NavigateCommand" type="Robot.Command.Navigate" />
<trigger name="NavigateCancel" type="Robot.Command.Navigate.Cancel" />
<post name="NavigateConfirm" type="Robot.Navigate.Confirm" />
<post name="NavigateSuccess" type="Robot.Navigate.Success" />
<post name="NavigateFailed" type="Robot.Navigate.Failed" />
<post name="NavigateTimeout" type="Robot.Navigate.Timeout" />
<post name="NavigateBusy" type="Robot.Navigate.Busy" />
<post name="NavigateCancelled" type="Robot.Navigate.Cancelled" />
<crank name="RobotStatus" language="python2" script="%AppDir%/robotstatus.py" />
<xxxcrank name="RobotStatus" function="ROSInterface::RobotStatusvVirtual" />
<post name="Status" type="Robot.Status" />
<post name="Blob" type="Robot.Vision.Blob" />
<post name="USB" type="Robot.Camera.USB" />
<post name="Color" type="Robot.Camera.Color" />
<post name="Depth" type="Robot.Camera.Depth" />
<post name="Registered" type="Robot.Camera.Registered" />
<post name="IR" type="Robot.Camera.IR" />
<post name="Map" type="Robot.Map" />
<post name="Button@Pressed" type="Robot.Button.0.Pressed" />
<post name="Button@Released" type="Robot.Button.0.Released" />
<post name="ButtonlPressed" type="Robot.Button.1l.Pressed" />
<post name="ButtonlReleased" type="Robot.Button.1l.Released" />
<post name="Button2Pressed" type="Robot.Button.2.Pressed" />
<post name="Button2Released" type="Robot.Button.2.Released" />

</module>

<module name="RobotSelf">
<parameter name="InvertPosX" type="String" value="Yes" />
<parameter name="Image" type="String" value="%DataDir%/turtlebot2.bmp” />
<parameter name="IdentityID" type="Integer" value="%SystemID%" />
<trigger name="Map" type="Robot.Map" />
<trigger name="RobotStatus" type="Robot.Status" />

<trigger name="OutgoingSpeech" type="output.speech.utterance" />
<post name="DetectedSpeech" type="output.speech.detected" />

<query name="Master" source="CCMMaster" />

<crank name="RobotSelf" function="Perception::RobotSelf" />

<post name="IdentityData" type="Self.Identity.Data" />

<post name="PositionData" type="Self.Position.Data" />
</module>

<module name="RobotNavigation">
<parameter name="HumanTimeout" type="Integer" value="30000" />
<parameter name="PointTimeout" type="Integer" value="10000" />
<parameter name="NavigationTimeout" type="Integer" value="30000" />
<trigger name="AutoNavigationOn" type="navigation.auto.on" />
<trigger name="AutoNavigationOff" type="navigation.auto.off" />
<trigger name="NavigateToNamedPoint" type="Robot.Request.Navigate.NamedPoint" />
<trigger name="NavigateRequest" type="Robot.Request.Navigate" />
<trigger name="NavigateConfirm" type="Robot.Navigate.Confirm" />
<trigger name="NavigateSuccess" type="Robot.Navigate.Success" />
<trigger name="NavigateFailed" type="Robot.Navigate.Failed" />
<trigger name="NavigateTimeout" type="Robot.Navigate.Timeout" />
<trigger name="NavigateBusy" type="Robot.Navigate.Busy" />
<trigger name="NavigateCancel" type="Robot.Navigate.Cancel" />
<trigger name="NavigateCancelled" type="Robot.Navigate.Cancelled" />
<query name="Master" source="CCMMaster" />
<crank name="RobotNavigation" function="Perception::RobotNavigation" />
<post name="NavigationActive" type="Robot.Status.Navigate.Active" />
<post name="NavigationComplete" type="Robot.Status.Navigate.Complete" />
<post name="NavigationFailed" type="Robot.Status.Navigate.Failed" />
<post name="NavigationTimeout" type="Robot.Status.Navigate.Timeout" />
<post name="NavigationBusy" type="Robot.Status.Navigate.Busy" />
<post name="NavigateCommand" type="Robot.Command.Navigate" />
<post name="NavigateCancel" type="Robot.Command.Navigate.Cancel" />

</module>

<| o= kokokok ok ok ok ok ok ok ok ok ok ok ok sk ok sk sk sk ok sk >k >k sk >k sk sk sk ok sk ok sk sk ok ok ok ok ok ok ok ok sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk ok %k k k k- >
<!-- Human detection N
Q1 m e KRR KK oK oK ok ok ok ok ok ok oK ok oK 3K 3K 3K 3K 3K 3K K 3K K KKK KKK KKK KKK KKK KKK KKK KRR KRR KRR R K R s ks ks ks ko sk kR sk sk ok ok okok -y

<module name="FaceFinder">
<parameter type="String" name="ClassifierA" value="haarcascade_frontalface_alt.xml" />
<parameter type="String" name="ClassifierB" value="haarcascade_frontalface_alt2.xml" />
<parameter type="String" name="ClassifierC" value="haarcascade_eye.xml" />
<trigger name="Start" type="Psyclone.Ready" after="5000" />
<crank name="FaceFinder" function="Perception::FaceFinder" />
<post name="Face" type="Input.Face.Found" />

79

CM LABS

Powering the Al Revolution™ Tutorials -- Example of a PsySpec for a large system
<post name="ImageFaces" type="Robot.Camera.USB" />
</module>

<module name="FaceRecognition">
<parameter name="Username" type="String" value="%FaceServerUsername%" />
<parameter name="Password" type="String" value="%FaceServerPassword%" />
<parameter name="ServerAddr" type="String" value="%FaceServerAddress%" />
<parameter name="ServerPort" type="Integer" value="%FaceServerPort%" />
<parameter name="PrintSuccess" type="String" value="Yes" />
<parameter name="PrintNoFace" type="String" value="Yes" />
<parameter name="MatchThreshold" type="Integer" value="50" />
<query name="Master" source="CCMMaster" />
<trigger name="Start" type="Psyclone.Ready" />
<trigger name="Face" type="Input.Face.Found" />
<xxxtrigger name="VideoFrame" type="Robot.Camera.USB" />
<crank name="FaceRecognition" function="Perception::FaceRecognition" />
<post name="Ready" type="Face.Detection.Ready" />
<post name="NoFace" type="Face.Detection.NoFace" />
<post name="UnknownFace" type="Face.Detection.Unknown" />
<post name="BadMatchFace" type="Face.Detection.Bad" />
<post name="Face" type="Face.Detection.Person" />
<post name="TooBusy" type="Face.Detection.Server.Skip" />
<post name="InputQueueSkip" type="Face.Detection.Queue.Skip" />
<post name="FaceProcFailed" type="Face.Detection.Failed" />
<post name="FaceProcTimeout" type="Face.Detection.Timeout" />
</module>

<module name="HumanDetection">
<parameter name="FaceToWidthScale" type="Float" value="3" />
<parameter name="AngleFromPixelsOffCentre" type="Float" value="3" />
<parameter name="VisualToDepthOffsetX" type="Integer" value="300" />
<parameter name="VisualToDepthOffsetY" type="Integer" value="200" />
<parameter name="DepthTopShade" type="Integer" value="200" />
<parameter name="VisualToDepthScaleX" type="Float" value="0.38" />
<parameter name="VisualToDepthScaleY" type="Float" value="0.60" />
<parameter name="HumanLeftTimeout" type="Integer" value="30000" />
<trigger name="Face" type="Face.Detection.Person" />
<trigger name="Depth" type="Robot.Camera.Registered" />
<trigger name="Status" type="Robot.Status" />
<trigger name="PositionData" type="Self.Position.Data" />
<query name="Master" source="CCMMaster" />
<crank name="HumanDetection" function="Perception::HumanDetection" />
<post name="Detection" type="Human.Self.Detected" />
<post name="HumanAppearedSelf" type="Human.Self.Appeared" />
<post name="HumanAppearedOther" type="Human.Other.Appeared" />
<post name="HumanLeft" type="Human.Left" />
<post name="OtherSystemDetection" type="Human.Other.Detected" />
<trigger name="IncomingSpeech" type="input.speech.info.semantic" />
<post name="DetectedSpeech" type="input.speech.detected" />

</module>

<| o= kokokokok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok >k >k >k >k 3k 3k ok ok ok ok ok ok ok ok ok ok ok ok 3k ok ok 3k ok ok sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok 3k 3k 3k 3k ok 3k ok ok ok ok ok 5k ok 5k Xk %k %k k %k -=>
<!-- Speech input -->
<| o= kokokokok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk 3k >k >k 3k ok ok ok ok ok ok ok ok ok ok ok ok ok 3k 3k ok 3k ok ok sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok 3k 3k 3k 3k ok 3k 3k 3k 5k 3k 5k 5k 3k 5k >k Xk Xk Xk Xk -=>
<!-- *** Audio input and output *** -->

<module name="RTAudioIn">
<parameter name="SampleFrequency" type="Integer" value="16000" />
<parameter name="BufferSize" type="Integer" value="768" />
<parameter name="List" type="Integer" value="@" />
<parameter name="DeviceName" type="String" value="%InputAudioDevice%" />
<trigger name="AudioStart" type="cmd.input.audio.on" />
<trigger name="AudioStop" type="cmd.input.audio.off" />
<trigger name="Guidance" type="cmd.input.audio.guidance" />
<post name="AudioFrame" type="input.audio.frame" />
<crank name="RTAudioInDirectional" function="Nuance::RTAudioInDirectional"” />

</module>

<l-- **¥*% pitch input *** -->

<module name="PitchTrackerInput" >
<description>

Detects pitch, pitch derivative and slope, silences and hums in a continuous speech.
Typical latency: 15ms. subject to scheduling latencies (ex: add Psyclone latencies when
the scheduler yields a sequential run)
Typical Psyclone routing latency: random, in {0,15} ms (scheduling sensitive)

</description>

<parameter name="ModuleID" type="Integer" value="1" />

<parameter name="BufferSize" type="Integer" value="768" />

<parameter name="SamplingFrequency" type="Integer" value="16000" />

<parameter name="Debug" type="Integer" value="0" />

<parameter name="StoreResultsInFile" type="Integer" value="0" />

<parameter name="AmplitudeThreshold" type="Float" value="0.65" />

<parameter name="NoiseThreshold" type="Float" value="6.0" />

80

CM LABS

Powering the Al Revolution Tutorials -- Example of a PsySpec for a large system
<parameter name="PitchHighPass" type="Integer" value="0" />
<parameter name="PitchLowPass" type="Integer" value="200" />
<parameter name="PitchDeltaConstraint" type="Float" value="5.0" />
<parameter name="PitchMonitorWindow" type="Integer" value="1000" />
<parameter name="PauseThreshold" type="Integer" value="1200" />
<parameter name="SegmentIntervalThreshold" type="Integer" value="70" />
<parameter name="SpeechOnDelay" type="Integer" value="2" />
<parameter name="HumDurationThreshold" type="Integer" value="200" />
<parameter name="HumPitchThreshold" type="Integer" value="10" />
<parameter name="PrintPitch" type="String" value="No" />
<trigger name="Start" type="input.audio.on"/>
<trigger name="Stop" type="input.audio.off" />
<trigger name="AudioFrame" type="input.audio.frame" />
<post name="SpeechOff" type="input.speech.raw.off"/>
<post name="SpeechOn" type="input.speech.raw.on" />
<post name="SpeechPause" type="input.speech.raw.pause" />
<crank name="PitchRuntimeInput" function="SpeechAnalyser::Runtime" />

</module>

<module name="PitchTrackerDetector">
<parameter name="Threshold" type="Float" value="1.5" />
<trigger name="AudioFrame" type="input.audio.frame" />
<trigger name="SpeechOff" type="input.speech.raw.off"/>
<trigger name="SpeechOn" type="input.speech.raw.on" />
<trigger name="SpeechPause" type="input.speech.raw.pause"” />
<crank name="PitchTrackerDetector" function="SpeechAnalyser::PitchTrackerDetector" />
<post name="SpeakerChange" type="input.speaker.change" />
<post name="SpeechOff" type="input.speech.off" />
<post name="SpeechOn" type="input.speech.on" />
<post name="SpeechPause" type="input.speech.pause” />
</module>

<module name="OverlapAnalyzer" >
<description>
Alerts to temporal overlaps between two or more voices
</description>
<trigger name="SpeechInputOff" type="input.speech.off" />
<trigger name="SpeechInputOn" type="input.speech.on" />
<trigger name="SpeechSelfOn" type="output.audio.started" />
<trigger name="SpeechSelfOff" type="output.audio.ended" />
<post name="OverlapStart" type="audio.overlap.on"/>
<post name="OverlapStop" type="audio.overlap.off"/>
<post name="PitchSilenceStart" type="audio.silence.started"/>
<post name="PitchSilenceStop" type="audio.silence.ended"/>
<crank name="PitchAnalyzeSlope" function="SpeechAnalyser::AnalyzeTwo" />
</module>

<module name="InterruptionDetector" >
<parameter name="Print" type="String" value="Yes" />
<parameter name="PossibleOverlap" type="Integer" value="600" />
<parameter name="DefiniteOverlap" type="Integer" value="1200" />
<trigger name="SpeechInputStart" type="input.speech.on" />
<trigger name="SpeechInputEnd" type="input.speech.off" />
<trigger name="SpeechOutputStart" type="output.audio.started" />
<trigger name="SpeechOutputEnd" type="output.audio.ended" />
<post name="InputInterruptPossible" type="input.speech.interrupt.possible"/>
<post name="InputInterruptDefinite" type="input.speech.interrupt.definite"/>
<post name="InputInterruptCancel” type="input.speech.interrupt.cancel”/>
<crank name="InterruptionDetector" function="SpeechAnalyser::InterruptionDetector"” />
</module>

<!--module name="YTTM" space="YTTMSpace" -->
<module name="YTTM">
<description>
Turn-taking module which controls all reactive (low-level) turn decisions.
</description>
<parameter name="libpath" type="String" value="Psyclone/CMSDK/bin/Win32" />
<trigger name="SpeechOffInput" type="input.speech.off"/>
<trigger name="SpeechOnInput" type="input.speech.on" />
<trigger name="SpeechOffOutput" type="output.audio.ended"/>
<trigger name="SpeechOnOutput" type="output.audio.started" />
<trigger name="OverlapStart" type="audio.overlap.on"/>
<trigger name="OverlapStop" type="audio.overlap.off"/>
<trigger name="DialogOn" type="dialog.on"/>
<trigger name="DialogOff" type="dialog.off"/>
<trigger name="SpeakCommandSent" type="dialog.on.utterance.started"/>
<trigger name="StoppedSpeaking" type="dialog.on.utterance.ended"/>
<post name="AudioPause" type="cmd.output.audio.pause” />
<post name="AudioResume" type="cmd.output.audio.resume" />
<post name="IHaveTurn" type="dialog.on.i-have-turn"/>
<post name="OtherHasTurn" type="dialog.on.other-has-turn"/>
<post name="IGiveTurn" type="dialog.on.i-give-turn"/>
<post name="OtherGivesTurn" type="dialog.on.other-gives-turn"/>
<post name="IAcceptTurn" type="dialog.on.i-accept-turn"/>

81

CM LABS

Powering the Al Revolution Tutorials -- Example of a PsySpec for a large system
<post name="OtherAcceptsTurn" type="dialog.on.other-accepts-turn"/>
<post name="IWantTurn" type="dialog.on.i-want-turn"/>
<post name="OtherWantsTurn" type="dialog.on.other-wants-turn"/>
<crank name="YTTM" language="python2" script="yttm.py" />
</module>

<module name="SpeechRecogniser">
<description>
Analyses input audio frames detecting speech events and utterances
</description>
<parameter name="AcmodFile" type="String" value="%NuanceVoconModels%/acmod6_6000_enu_gen_car_f1l6_vl_0_0.dat" />
<parameter name="CTXFile" type="String" value="%NuanceVoconModels%/ctx_enu_messaging_v6_1_0_1_0.fcf" />
<parameter name="ITNCTXFile" type="String" value="%NuanceVoconModels%/itn_enu_messaging v1_0.s3c" />
<parameter name="AudioInputType" type="String" value="Raw" />
<parameter name="Verbose" type="Integer" value="1" />
<trigger name="Start" type="Psyclone.Ready" />
<trigger name="Start2" type="input.audio.start" />
<trigger name="AudioFrame" type="input.audio.frame" />
<trigger name="Stop" type="input.audio.stop" />
<post name="Started" type="xxx.input.speech.on" />
<post name="Stop" type="xxx.input.speech.off" />
<post name="Begin" type="input.speech.begin" />
<post name="MaybeSpeech" type="input.speech.maybe" />
<post name="NoSpeech" type="input.speech.none" />
<post name="Recognition" type="input.speech.reco" />
<post name="PassEnd" type="input.speech.passReport" />
<post name="Result" type="input.speech.hypothesis" />
<post name="Semantic" type="input.speech.info.semantic" />
<post name="Timeout" type="input.speech.timeout"” />
<post name="BadSNR" type="input.speech.badsnr" />
<post name="Overload" type="input.speech.overload" />
<post name="TooQuiet" type="input.speech.tooquiet"” />
<post name="NoSignal" type="input.speech.signal.off" />
<post name="PoorMic" type="input.speech.poormic"” />
<crank name="SpeechRecogniser" function="Nuance::NuanceRecogniser" />

</module>

oo R KRR KK KKK R KKK R K KK KR SR K K KoK ok KK KoK S K K oK ok ok R K KK R KKK KK R KK KRR KRR R R KRR R R R kK s
<!-- Speech output -->
<!__ 3k 3k 3k 3k ok ok ok ok ok 3k ok ok ok ok 3k sk ok ok sk sk sk sk sk sk sk Sk 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k ok 3k ok ok ok >k k k 3k 3k 3k ok >k ok ok 3k 3k ok -=>

<module name="NuanceTTS">

<description>
Takes textual utterances and turns them into audio frames to be played back

</description>
<parameter name="BaseDir" type="String" value="%NuanceTTSEngine%" />
<parameter name="VoiceName" type="String" value="kate" />
<parameter name="VoiceQuality" type="String" value="premium-high" />
<parameter name="SampleFrequency" type="Integer" value="22000" />
<parameter name="BufferSize" type="Integer" value="768" />
<trigger name="GenerateSpeechAudio" type="output.speech.utterance" />
<post name="AudioStart" type="output.speech.on" />
<post name="AudioFrame" type="output.audio.frame" />
<post name="AudioEnd" type="output.speech.off" />
<post name="GenerationError" type="output.audio.error" />
<crank name="NuanceTTS" function="Nuance::NuanceTTS" />

</module>

<module name="SpeakerOutput">
<description>
Plays audio frames to the default speaker
</description>
<parameter name="InputSampleRate" type="Integer" value="22000" />
<parameter name="OutputSampleRate" type="Integer" value="48000" />
<parameter name="BufferSize" type="Integer" value="1675 " />
<parameter name="DeviceName" type="String" value="%OutputAudioDevice%" />
<trigger name="DefaultTrigger" type="Psyclone.Ready" />
<trigger name="AudioStart" type="output.speech.on" />
<trigger name="AudioFrame" type="output.audio.frame" />
<trigger name="AudioEnd" type="output.speech.off" />
<trigger name="AudioFlush" type="cmd.output.audio.flush" />
<trigger name="AudioPause" type="cmd.output.audio.pause” />
<trigger name="AudioResume" type="cmd.output.audio.resume" />
<post name="AudioOn" type="output.audio.on" />
<post name="AudioOff" type="output.audio.off" />
<post name="AudioStarted" type="output.audio.started" />
<post name="AudioFinished" type="output.audio.ended" />
<post name="AudioPaused" type="output.audio.paused" />
<post name="AudioResumed" type="output.audio.resumed" />
<post name="AudioFlushed" type="output.audio.flushed" />
<crank name="RTAudioOut" function="Nuance::RTAudioOut" />
</module>

82

CM LABS

Powering the Al Revolution™ Tutorials -- Example of a PsySpec for a large system
<module name="StopSpeakingDetector">
<description>
Detects when the output audio device has finished playing the TTS audio
</description>

<trigger name="AudioOutStopped" type="output.audio.ended"/>
<post name="StoppedSpeaking" type="dialog.on.utterance.ended"/>
</module>

<module name="RobotSpeechMonitor">
<parameter name="SpeakingTaskName" type="String" value="OutputSpeech" />
<trigger name="TaskAccepted" type="Task.Accepted" />
<trigger name="TaskUpdated" type="Task.Updated" />
<trigger name="TaskCompleted" type="Task.Completed" />
<trigger name="TaskCancelled" type="Task.Cancelled" />
<trigger name="TaskTimeout" type="Task.Timeout" />
<crank name="RobotSpeechMonitor" function="Perception::RobotSpeechMonitor" />
<post name="RobotStartedSpeaking" type="Robot.Speaking.Started" />
<post name="RobotFinishedSpeaking" type="Robot.Speaking.Finished" />
<post name="SpeakerChange" type="input.speaker.change" />
</module>

<module name="RobotNavigationWithSpeech">
<trigger name="NavigateToNamedPointSpeech" type="Robot.Task.NavigateSpeech" />
<post name="NavigateToNamedPointSpeechStatus" type="Robot.Task.NavigateSpeech.Active" />
<post name="NavigateToNamedPointSpeechFailed" type="Robot.Task.NavigateSpeech.Failed" />
<post name="NavigateToNamedPointSpeechSuccess" type="Robot.Task.NavigateSpeech.Complete" />
<post name="OutputSpeech" type="output.speech.utterance" />
<crank name="RobotNavigationWithSpeech" function="Perception::RobotNavigationWithSpeech" />

<post name="PerformTask" type="Task.Perform" />

<post name="CancelTask" type="Task.Cancel” />

<trigger name="TaskAccepted" type="Task.Accepted" />

<trigger name="TaskUpdated" type="Task.Updated" />

<trigger name="TaskCompleted" type="Task.Completed" />

<trigger name="TaskTimeout" type="Task.Timeout" />

<trigger name="TaskCancelled" type="Task.Cancelled" />
</module>

<module name="RobotPINCodeWithSpeech">
<trigger name="EnterScreenPINSpeech" type="Robot.Task.EnterPINSpeech" />
<post name="EnterScreenPINFailed" type="Robot.Task.EnterPINSpeech.Failed" />
<post name="EnterScreenPINSuccess" type="Robot.Task.EnterPINSpeech.Success" />
<crank name="RobotPINCodeWithSpeech" function="Perception::RobotPINCodeWithSpeech" />

<post name="PerformTask" type="Task.Perform" />

<post name="CancelTask" type="Task.Cancel” />

<trigger name="TaskAccepted" type="Task.Accepted" />
<trigger name="TaskUpdated" type="Task.Updated" />
<trigger name="TaskCompleted" type="Task.Completed" />
<trigger name="TaskTimeout" type="Task.Timeout" />
<trigger name="TaskCancelled" type="Task.Cancelled" />

</module>

<| o= kokokokok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk 3k >k >k 3k ok ok ok ok ok ok ok ok ok ok ok ok ok 3k 3k ok 3k ok ok sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok 3k 3k 3k 3k ok 3k 3k 3k 5k 3k 5k 5k 3k 5k >k Xk Xk Xk Xk -=>
<!-- Control Panels -=>
Q1 m o KRR R oK oK ok ok ok ok ok oK oK ok oK 3K 3K K K K K K K KK KKK KKK KKK KKK KKK KK KKK KRR KRR SRR KRR KRR KRR SRRk R Rk kok sk ok ok sy

<module name="PanelControllerl">
<query name="ControlPanel" source="Panell" host="%MasterAddress%" port="%MasterPort%" />

<trigger name="Reset" type="Panell.Command.Reset" />
<post name="ResetSuccess" type="Panell.Command.Reset.Success" />
<post name="ResetFailed" type="Panell.Command.Reset.Failed" />

<trigger name="OptionSelect" type="Panell.Command.Select" />
<post name="OptionSelectSuccess" type="Panell.Command.Select.Success" />
<post name="OptionSelectFailed" type="Panell.Command.Select.Failed" />

<trigger name="ReadScreen" type="Panell.Command.ReadScreen" />
<post name="ReadScreenSuccess" type="Panell.Command.ReadScreen.Success" />
<post name="ReadScreenFailed" type="Panell.Command.ReadScreen.Failed" />

<trigger name="BackNavigation" type="Panell.Command.Back" />
<post name="BackNavigationSuccess" type="Panell.Command.Back.Success" />
<post name="BackNavigationFailed" type="Panell.Command.Back.Failed" />

<trigger name="EnterPIN" type="Panell.Command.EnterPIN" />
<post name="EnterPINSuccess" type="Panell.Command.EnterPIN.Success" />
<post name="EnterPINFailed" type="Panell.Command.EnterPIN.Failed" />

<crank name="PanelControllerl" function="PsySystem::ControlPanelController" />

<post name="ViewUpdated" type="Panell.View.Update" />
<post name="ErrorView" type="Panell.View.Error" />

83

CM LABS

Powering the Al Revolution™ Tutorials -- Example of a PsySpec for a large system
</module>

<module name="PanelController2">
<query name="ControlPanel" source="Panel2" host="%MasterAddress%" port="%MasterPort%" />

<trigger name="Reset" type="Panel2.Command.Reset" />
<post name="ResetSuccess" type="Panel2.Command.Reset.Success" />
<post name="ResetFailed" type="Panel2.Command.Reset.Failed" />

<trigger name="OptionSelect" type="Panel2.Command.Select" />
<post name="OptionSelectSuccess" type="Panel2.Command.Select.Success" />
<post name="OptionSelectFailed" type="Panel2.Command.Select.Failed" />

<trigger name="ReadScreen" type="Panel2.Command.ReadScreen" />
<post name="ReadScreenSuccess" type="Panel2.Command.ReadScreen.Success" />
<post name="ReadScreenFailed" type="Panel2.Command.ReadScreen.Failed" />

<trigger name="BackNavigation" type="Panel2.Command.Back" />
<post name="BackNavigationSuccess" type="Panel2.Command.Back.Success" />
<post name="BackNavigationFailed" type="Panel2.Command.Back.Failed" />

<trigger name="EnterPIN" type="Panel2.Command.EnterPIN" />
<post name="EnterPINSuccess" type="Panel2.Command.EnterPIN.Success" />
<post name="EnterPINFailed" type="Panel2.Command.EnterPIN.Failed" />

<crank name="PanelController2" function="PsySystem::ControlPanelController" />
<post name="ViewUpdated" type="Panel2.View.Update" />
<post name="ErrorView" type="Panel2.View.Error" />

</module>

oo R KKK ok KK KKK R KKK R K KK KR SR K KKK ok KK KoK SR K K Kok ok R K KK R KKK KR SRR SK KRR K KRR R R KRR R R Rk s
<!-- Role management -->
<!__ 3k 3k 3k 3k ok sk ok 3k ok ok ok ok ok ok ok sk ok sk sk sk sk sk sk sk sk Sk ok 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k ok ok ok 3k k k ok 3k 3k ok ok ok >k sk 3k ok -=>

<module name="RoleNegotiator">
<query name="Master" source="CCMMaster" />
<parameter type="String" name="DefaultRole" value="Searcher" />
<parameter type="String" name="PrimaryRole" value="Communicator" />
<parameter type="String" name="SecondaryRole" value="Controller" />
<trigger name="Start" type="Psyclone.Ready" />
<trigger name="UpgradeRole" type="Human.Self.Appeared" />
<trigger name="DowngradeRole" type="Human.Left" />
<trigger name="RoleAssigned" type="Role.Assigned" />
<trigger name="RoleLeft" type="Role.Left" />
<trigger name="RoleGiven" type="Role.Given" />
<crank name="RoleNegotiator" function="PsySystem::RoleNegotiator" />
<post name="NowDefaultRole" type="Self.Role.Searcher" />
<post name="NowPrimaryRole" type="Self.Role.Communicator" />
<post name="NowSecondaryRole" type="Self.Role.Controller" />

</module>

<|__ 3k 3k 3k 3k ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk ok 3k ok ok ok ok ok ok 3k 3k 3k ok 3k 3k 3k ok ok ok ok ok >k k k sk >k >k 3k >k >k >k >k ok -=>
<!-- Task management -->
oo R R ok KoKk ok o K KKK oK R KKK R K KK KoK ok K K oK ok ok KK Kok SR K K Sk ok ok ok K Kk ok R KKK Kok SRSk k ok R KKk SRR Rk kR R R Rk s

<module name="TaskNegotiator">
<query name="Master" source="CCMMaster" />
<trigger name="PerformTask" type="Task.Perform" />
<trigger name="CancelTask" type="Task.Cancel" />
<trigger name="TaskAccepted" type="Task.Accepted" />
<trigger name="TaskUpdated" type="Task.Updated" />
<trigger name="TaskCompleted" type="Task.Completed" />
<trigger name="TaskTimeout" type="Task.Timeout" />
<trigger name="TaskCancelled" type="Task.Cancelled" />
<crank name="TaskNegotiator" function="PsySystem::TaskNegotiator" />
</module>

<module name="TaskExecutor">
<query name="Master" source="CCMMaster" />
<trigger name="TaskAssigned" type="Task.Assigned" />
<trigger name="TaskTimeout" type="Task.Timeout" />
<trigger name="TaskCancelled" type="Task.Cancelled" />
<crank name="TaskExecutor" function="PsySystem::TaskExecutor" />

<post name="NavigateToNamedPoint" type="Robot.Request.Navigate.NamedPoint" />
<trigger name="NavigateToNamedPointStatus" type="Robot.Status.Navigate.Active" />
<trigger name="NavigateToNamedPointFailed" type="Robot.Status.Navigate.Failed" />
<trigger name="NavigateToNamedPointSuccess" type="Robot.Status.Navigate.Complete" />

<post name="ResetScreen" type="Panel.Command.Reset" />

<trigger name="ResetScreenFailed" type="*.Command.Reset.Failed" />
<trigger name="ResetScreenSuccess" type="*.Command.Reset.Success" />

84

CM LABS

Powering the Al Revolution™ Tutorials -- Example of a PsySpec for a large system

<post name="ReadScreen" type="Panel.Command.ReadScreen" />
<trigger name="ReadScreenSuccess" type="*.Command.ReadScreen.Success" />
<trigger name="ReadScreenFailed" type="*.Command.ReadScreen.Failed" />

<post name="NavigateBack" type="Panel.Command.Back" />
<trigger name="NavigateBackFailed" type="*.Command.Back.Failed" />
<trigger name="NavigateBackSuccess" type="*.Command.Back.Success" />

<post name="SelectScreenOption" type="Panel.Command.Select" />
<trigger name="SelectScreenOptionFailed" type="*.Command.Select.Failed" />
<trigger name="SelectScreenOptionSuccess" type="*.Command.Select.Success" />

<post name="EnterScreenPIN" type="Panel.Command.EnterPIN" />
<trigger name="EnterScreenPINFailed" type="*.Command.EnterPIN.Failed" />
<trigger name="EnterScreenPINSuccess" type="*.Command.EnterPIN.Success" />

<post name="NavigateToNamedPointSpeech" type="Robot.Task.NavigateSpeech" />

<trigger name="NavigateToNamedPointSpeechStatus" type="Robot.Task.NavigateSpeech.Active" />
<trigger name="NavigateToNamedPointSpeechFailed" type="Robot.Task.NavigateSpeech.Failed" />
<trigger name="NavigateToNamedPointSpeechSuccess" type="Robot.Task.NavigateSpeech.Complete" />

<post name="EnterScreenPINSpeech" type="Robot.Task.EnterPINSpeech" />
<trigger name="EnterScreenPINSpeechFailed" type="Robot.Task.EnterPINSpeech.Failed" />
<trigger name="EnterScreenPINSpeechSuccess" type="Robot.Task.EnterPINSpeech.Success" />

<post name="TestTask" type="Task.Test.Start" />

<trigger name="TestTaskFailed" type="Task.Test.Failed" />

<trigger name="TestTaskSuccess" type="Task.Test.Success" />
</module>

<module name="AutoPanelSelectController">
<description>
This module translates Control Panel tasks such as Panel.Command.Reset to go to
the correct panel, i.e. either to Panell.Command.Reset or Panel2.Command.Reset
depending on the current state which is either ControlPanell or ControlPanel2
</description>

<parameter type="String" name="DefaultState" value="ControlPanell" />
<parameter type="String" name="SwitchKey" value="PointName" />

<!-- Main control messages -->

<trigger name="Ready" type="Psyclone.Ready" />

<trigger name="SwitchMessage" type="Robot.Status.Navigate.Complete" />
<post name="ControlPanell" type="Robot.Location.Panell" />

<post name="ControlPanel2" type="Robot.Location.Panel2" />

<post name="NoState" type="Robot.Location.None" />

<!-- Convert Reset message -->

<trigger name="Reset" type="Panel.Command.Reset" />

<post name="Reset_ControlPanell" type="Panell.Command.Reset" />
<post name="Reset_ControlPanel2" type="Panel2.Command.Reset" />

<!-- Convert OptionSelect message -->

<trigger name="OptionSelect" type="Panel.Command.Select" />

<post name="OptionSelect_ControlPanell" type="Panell.Command.Select" />
<post name="OptionSelect_ControlPanel2" type="Panel2.Command.Select" />

<!-- Convert ReadScreen message -->

<trigger name="ReadScreen" type="Panel.Command.ReadScreen" />

<post name="ReadScreen_ControlPanell" type="Panell.Command.ReadScreen" />
<post name="ReadScreen_ControlPanel2" type="Panel2.Command.ReadScreen" />

<!-- Convert BackNavigation message -->

<trigger name="BackNavigation" type="Panel.Command.Back" />

<post name="BackNavigation_ControlPanell"” type="Panell.Command.Back" />
<post name="BackNavigation_ControlPanel2" type="Panel2.Command.Back" />

<!-- Convert EnterPIN message -->

<trigger name="EnterPIN" type="Panel.Command.EnterPIN" />

<post name="EnterPIN_ControlPanell"” type="Panell.Command.EnterPIN" />
<post name="EnterPIN_ControlPanel2" type="Panel2.Command.EnterPIN" />

<crank name="AutoPanelSelectController" function="MessageToggler" />
</module>
<!-- A test module for the TaksExecutor -->
<module name="TestTask">

<trigger name="TestTask" type="Task.Test.Start" after="2000" />

<post name="TestTaskFailed" type="Task.Test.Failed" />
</module>

85

CM LABS

Powering the Al Revolution™ H
g Tutorials -- Example of a PsySpec for a large system
<!__ 3k 3k 3k 3k ok ok sk ok 3k 3k ok ok sk ok k 3k >k sk ok 3k sk ok k sk %k 3k 5k 3k 5k ok 3k 5k ok 3k 5k >k 3k 5k >k 3k 5k >k 3k 5k >k 3k >k 3k sk >k 3k 5k >k 3k 5k >k 3k >k 3k 5k >k 3k 5k 3k 3k >k 3k 5k >k 3k 5k >k %k 5k >k %k 5k k 5k k k -=>
<!-- Dialog management -->
1o o ekskskokokokok ok okoksk ok ok sksk kol skok skt kokok sk koskoksk ok sk kokskok sk koksksk sk ockokok sk okoskok skt skokokok sk skokosk sk okl kool ko kokskokskkokokk Ly

<module name="TDM">
<description>
Task Dialog Manager spec file. It tries to input new words each
time they are available and tries to respond when YTTM gives turn
</description>

<parameter name="SystemID" type="Integer" value="%SystemID%" />

<post name="RobotStartedSpeaking" type="Robot.Speaking.Started" />
<post name="RobotFinishedSpeaking" type="Robot.Speaking.Finished" />

<trigger name="Ready" type="Psyclone.Ready"/>

<trigger name="DialogOn" type="dialog.on"/>

<trigger name="DialogOff" type="dialog.off"/>

<trigger name="NewWords" type="input.speech.info.semantic" />

<trigger name="Speakl" type="dialog.on.i-have-turn"/>
<trigger name="Speak2" type="dialog.on.i-accept-turn"/>
<trigger name="Speak3" type="dialog.on.other-gives-turn"/>

<trigger name="InputInterrupt" type="input.speech.interrupt.definite"/>

<post name="IWantTurn" type="dialog.on.i-want-turn"/>
<post name="Talk" type="output.speech.utterance"/>
<post name="MoveExecutor" type="move.executor.point" />
<post name="DialogOff" type="dialog.off" />

<!-- Modular testing functions, using TaskExecutor -->
<trigger name="TaskCompleted" type="Task.Completed" />
<post name="PerformTask" type="Task.Perform" />

<post name="CancelTask" type="Task.Cancel” />

<trigger name="TaskAccepted" type="Task.Accepted" />
<trigger name="TaskUpdated" type="Task.Updated" />
<trigger name="TaskTimeout" type="Task.Timeout" />
<trigger name="TaskCancelled" type="Task.Cancelled" />

<crank name="PsyCrank" language="python2" script="TDM_psyclone.py" />
</module>

</psySpec>

86

CM LABS

Powering the Al Revolution™ Tutorials -- Example of a PsySpec for a large system

ACTIVITY 45 ONE-SHOT 15
ADVANCED FILTERING 23 PARAMETERS 16
AFTER 21 PASSTHROUGH MODULES 20
AGENT-BASED SIMULATION 63 PORT 24
AP| DOCUMENTATION 58 PREREQUISITES 6
CATALOGS 34 PRIVATE DATA 49
CMSDK LIBRARY 58 PROCESS SEPARATION 55
CoCoMaAPs 63 PsYPROBE 42
COMPONENT CRANKS 14 PSYPROBE PORT 26
CONTEXTS 27 PSYPROBE SUBSITE 51
CONTINUOUS COMPONENTS 15 PSYSPEC VARIABLES 18
CUSTOM CATALOGS 38 PsYSPEC XML FILE 11
CUSTOM CONFIGURATION DATA 18 PYTHON IMPORT LIBRARIES 31
CUSTOM TABS 48 PYTHON MODULES 30
CUSTOM VIEWS 47 REMOTE QUERY 57
DATA CATALOG 35 REMOTE REQUESTS 57
DATAFLOW 21 REPLAY CATALOG 36
DEBUG 24 REQUEST STORE CATALOG 37
DISTRIBUTED PSYCLONE SYSTEMS 54 ROBOTS 63
EXTERNAL SPACES 55 RUNNING PSYCLONE ON UNIX 8
FILE CATALOG 34 RUNNING PSYCLONE ON WINDOWS 8
FILTERS 22 SEPARATE PSYCLONE SYSTEMS 57
FROM 22 SERVICES 52
GRID DATA 62 SIGNALS 21
INCLUDING OTHER FILES 19 SIMULATION 63
INLINE PYTHON MODULES 30 SPACES 55
INTERACTIVE ROBOTS 63 STATISTICS 47
INTERFACES 52 SYSTEM PARAMETERS 24
INTERVAL 21 TAGGING 23
INTRODUCTION 5 THIRD-PARTY APPLICATIONS 62
LIBRARIES 14 To 22
LICENSING 6 TUTORIALS 64
LINKING WITH THE CMSDK LIBRARY 59 TYPES 41
LOCAL PERSISTENT (PRIVATE) DATA 16 UsE CASES 62
MAKE 10 USER CONTENTS 41
MAXAGE 22 VERBOSE 24
MESSAGE TYPES 12 VISUAL STuDIO 2015 9
MODULES 32 WHITEBOARDS 32
NODES 54

87

